Suppr超能文献

通过基因表达谱鉴定动脉粥样硬化的分子亚型和关键基因

Identification of Molecular Subtypes and Key Genes of Atherosclerosis Through Gene Expression Profiles.

作者信息

Yang Yujia, Cai Yue, Zhang Yuan, Yi Xu, Xu Zhiqiang

机构信息

Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.

Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.

出版信息

Front Mol Biosci. 2021 Apr 28;8:628546. doi: 10.3389/fmolb.2021.628546. eCollection 2021.

Abstract

Atherosclerotic cardiovascular disease (ASCVD) caused by atherosclerosis (AS) is one of the highest causes of mortality worldwide. Although there have been many studies on AS, its etiology remains unclear. In order to carry out molecular characterization of different types of AS, we retrieved two datasets composed of 151 AS samples and 32 normal samples from the Gene Expression Omnibus database. Using the non-negative matrix factorization (NMF) algorithm, we successfully divided the 151 AS samples into two subgroups. We then compared the molecular characteristics between the two groups using weighted gene co-expression analysis (WGCNA) and identified six key modules associated with the two subgroups. Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis were used to identify the potential functions and pathways associated with the modules. In addition, we used the cytoscape software to construct and visualize protein-protein networks so as to identify key genes in the modules of interest. Three hub genes including , , and were further screened using the least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE) algorithms. Since the modules were associated with immune pathways, we performed immune cell infiltration analysis. We discovered a significant difference in the level of immune cell infiltration by naïve B cells, CD8 T cells, T regulatory cells (Tregs), resting NK cells, Monocytes, Macrophages M0, Macrophages M1, and Macrophages M2 between the two subgroups. In addition, we observed the three hub genes were positively correlated with Tregs but negatively correlated with Macrophages M0. We also found that the three key genes are differentially expressed between normal and diseased tissue, as well as in the different subgroups. Receiver operating characteristic (ROC) results showed a good performance in the validation dataset. These results may provide novel insight into cellular and molecular characteristics of AS and potential markers for diagnosis and targeted therapy.

摘要

动脉粥样硬化(AS)引起的动脉粥样硬化性心血管疾病(ASCVD)是全球死亡率最高的原因之一。尽管对AS已经进行了许多研究,但其病因仍不清楚。为了对不同类型的AS进行分子特征分析,我们从基因表达综合数据库中检索了两个数据集,分别由151个AS样本和32个正常样本组成。使用非负矩阵分解(NMF)算法,我们成功地将151个AS样本分为两个亚组。然后,我们使用加权基因共表达分析(WGCNA)比较了两组之间的分子特征,并确定了与两个亚组相关的六个关键模块。使用京都基因与基因组百科全书(KEGG)和基因本体(GO)富集分析来确定与这些模块相关的潜在功能和途径。此外,我们使用Cytoscape软件构建并可视化蛋白质-蛋白质网络,以识别感兴趣模块中的关键基因。使用最小绝对收缩和选择算子(LASSO)和支持向量机递归特征消除(SVM-RFE)算法进一步筛选出三个枢纽基因,包括 、 和 。由于这些模块与免疫途径相关,我们进行了免疫细胞浸润分析。我们发现两个亚组之间幼稚B细胞、CD8 T细胞、调节性T细胞(Tregs)、静息NK细胞、单核细胞、M0巨噬细胞、M1巨噬细胞和M2巨噬细胞的免疫细胞浸润水平存在显著差异。此外,我们观察到这三个枢纽基因与Tregs呈正相关,但与M0巨噬细胞呈负相关。我们还发现这三个关键基因在正常组织和病变组织之间以及不同亚组中存在差异表达。受试者工作特征(ROC)结果显示在验证数据集中表现良好。这些结果可能为AS的细胞和分子特征以及诊断和靶向治疗的潜在标志物提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b92/8113832/580b2d63c0c4/fmolb-08-628546-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验