Suppr超能文献

利用RNA测序数据和机器学习识别心力衰竭中的可变剪接调控模式及特征性剪接因子。

Identification of alternative splicing regulatory patterns and characteristic splicing factors in heart failure using RNA-seq data and machine learning.

作者信息

Li Jia, Tu Dingyuan, Li Songhua, Guo Zhifu, Song Xiaowei

机构信息

Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, Shanghai, China.

出版信息

Heliyon. 2024 Jul 30;10(15):e35408. doi: 10.1016/j.heliyon.2024.e35408. eCollection 2024 Aug 15.

Abstract

Heart failure (HF) represents the advanced stage of several cardiovascular disorders. This study aimed to build an alternative splicing regulatory network and identify potential splicing factors involved in HF utilizing RNA-seq data and machine learning algorithms. We performed bioinformatics analysis on RNA-seq datasets containing samples from HF patients and normal individuals to obtain gene expression matrices and identify differently regulated alternative splicing events in HF. By calculating percent spliced-in (PSI) value, we identified 4055 abnormal alternative splicing events of 3142 genes in HF. These genes were significantly enriched in PPAR signaling, regulation of actin cytoskeleton, and muscle contraction. Interestingly, based on abnormal alternative splicing events, two distinct clusters of HF patients with distinct molecular mechanisms and pathways were identified using unsupervised clustering. Additionally, we built a regulatory network consisting of heart failure-related alternative splicing and splicing factors. Subsequently, we identify 203 HF specific pairs between splicing factors and alternative splicing events. Four splicing factors (RBM5, ZRANB2, HnRNPF, and HnRNPA0) were found using LASSO and SVM-RFE algorithms, their expression patterns were confirmed in two other microarray datasets. Our study clarifies involvement of splicing factors and alternative splicing events in HF by thoroughly analyzing RNA-seq data with machine learning methods. The findings may advance our understanding of the regulatory systems underlying biological processes associated with heart failure by providing candidates for further investigation and markers for diagnostic and therapeutic purposes.

摘要

心力衰竭(HF)是几种心血管疾病的晚期阶段。本研究旨在利用RNA测序数据和机器学习算法构建一个可变剪接调控网络,并识别参与HF的潜在剪接因子。我们对包含HF患者和正常个体样本的RNA测序数据集进行了生物信息学分析,以获得基因表达矩阵,并识别HF中差异调控的可变剪接事件。通过计算内含子剪接百分比(PSI)值,我们在HF中鉴定出3142个基因的4055个异常可变剪接事件。这些基因在PPAR信号通路、肌动蛋白细胞骨架调节和肌肉收缩中显著富集。有趣的是,基于异常可变剪接事件,使用无监督聚类鉴定出具有不同分子机制和途径的两个不同的HF患者簇。此外,我们构建了一个由心力衰竭相关可变剪接和剪接因子组成的调控网络。随后,我们鉴定出剪接因子和可变剪接事件之间的203对HF特异性配对。使用LASSO和SVM-RFE算法发现了四个剪接因子(RBM5、ZRANB2、HnRNPF和HnRNPA0),它们的表达模式在另外两个微阵列数据集中得到了证实。我们的研究通过使用机器学习方法全面分析RNA测序数据,阐明了剪接因子和可变剪接事件在HF中的作用。这些发现可能通过提供进一步研究的候选物以及用于诊断和治疗目的的标志物,推进我们对与心力衰竭相关的生物过程潜在调控系统的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa38/11336631/0ead1cedbce2/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验