Suppr超能文献

机器学习辅助的微通道惯性升力快速预测。

Machine learning assisted fast prediction of inertial lift in microchannels.

机构信息

Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.

School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Lab Chip. 2021 Jun 29;21(13):2544-2556. doi: 10.1039/d1lc00225b.

Abstract

Inertial effect has been extensively used in manipulating both engineered particles and biocolloids in microfluidic platforms. The design of inertial microfluidic devices largely relies on precise prediction of particle migration that is determined by the inertial lift acting on the particle. In spite of being the only means to accurately obtain the lift forces, direct numerical simulation (DNS) often consumes high computational cost and even becomes impractical when applied to microchannels with complex geometries. Herein, we proposed a fast numerical algorithm in conjunction with machine learning techniques for the analysis and design of inertial microfluidic devices. A database of inertial lift forces was first generated by conducting DNS over a wide range of operating parameters in straight microchannels with three types of cross-sectional shapes, including rectangular, triangular and semicircular shapes. A machine learning assisted model was then developed to gain the inertial lift distribution, by simply specifying the cross-sectional shape, Reynolds number and particle blockage ratio. The resultant inertial lift was integrated into the Lagrangian tracking method to quickly predict the particle trajectories in two types of microchannels in practical devices and yield good agreement with experimental observations. Our database and the associated codes allow researchers to expedite the development of the inertial microfluidic devices for particle manipulation.

摘要

惯性效应已广泛应用于微流控平台中对工程粒子和生物胶体的操控。惯性微流控器件的设计在很大程度上依赖于对粒子迁移的精确预测,而粒子迁移则由作用于粒子上的惯性升力决定。尽管直接数值模拟 (DNS) 是准确获得升力的唯一手段,但当应用于具有复杂几何形状的微通道时,它通常会消耗大量的计算成本,甚至变得不切实际。在此,我们提出了一种快速数值算法,并结合机器学习技术,用于分析和设计惯性微流控器件。首先,通过在具有三种横截面形状(矩形、三角形和半圆形)的直微通道中对广泛的操作参数进行 DNS,生成了惯性升力数据库。然后,通过简单指定横截面形状、雷诺数和粒子阻塞比,开发了一个机器学习辅助模型来获得惯性升力分布。将得到的惯性升力集成到拉格朗日跟踪方法中,可以快速预测实际器件中两种类型微通道中的粒子轨迹,并与实验观察结果吻合良好。我们的数据库和相关代码允许研究人员加快用于粒子操控的惯性微流控器件的开发。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验