EaStChem School of Chemistry, Biomedical Sciences Research Complex, Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland.
J Phys Chem B. 2021 May 27;125(20):5358-5364. doi: 10.1021/acs.jpcb.1c03666. Epub 2021 May 17.
The study of ever more complex biomolecular assemblies implicated in human health and disease is facilitated by a suite of complementary biophysical methods. Pulse dipolar electron paramagnetic resonance spectroscopy (PDS) is a powerful tool that provides highly precise geometric constraints in frozen solutions; however, the drive toward PDS at physiologically relevant sub-μM concentrations is limited by the currently achievable concentration sensitivity. Recently, PDS using a combination of nitroxide- and Cu-based spin labels allowed measuring a 500 nM concentration of a model protein. Using commercial instrumentation and spin labels, we demonstrate Cu-Cu and nitroxide-nitroxide PDS measurements at protein concentrations below previous examples reaching 500 and 100 nM, respectively. These results demonstrate the general feasibility of sub-μM PDS measurements at short to intermediate distances (∼1.5 to 3.5 nm), and are of particular relevance for applications where the achievable concentration is limiting.
越来越多涉及人类健康和疾病的复杂生物分子组装的研究得到了一系列互补的生物物理方法的促进。脉冲偶极电子顺磁共振波谱(PDS)是一种强大的工具,可在冷冻溶液中提供高度精确的几何约束;然而,目前可实现的浓度灵敏度限制了在生理相关的亚微摩尔浓度下进行 PDS 的发展。最近,使用氮氧自由基和 Cu 基自旋标记物的组合的 PDS 允许测量模型蛋白的 500 nM 浓度。使用商业仪器和自旋标记物,我们在低于以前的示例的蛋白质浓度下实现了 Cu-Cu 和氮氧自由基-氮氧自由基 PDS 测量,分别达到 500 nM 和 100 nM。这些结果证明了在短至中等距离(约 1.5 至 3.5nm)下进行亚微摩尔 PDS 测量的一般可行性,并且对于那些可实现的浓度有限的应用特别相关。