Suppr超能文献

人工智能在评估初级纤毛中的应用。

Artificial Intelligence Approaches to Assessing Primary Cilia.

机构信息

Department of Biology, Indiana University-Purdue University Indianapolis.

Nikon Instruments Inc.

出版信息

J Vis Exp. 2021 May 1(171). doi: 10.3791/62521.

Abstract

Cilia are microtubule based cellular appendages that function as signaling centers for a diversity of signaling pathways in many mammalian cell types. Cilia length is highly conserved, tightly regulated, and varies between different cell types and tissues and has been implicated in directly impacting their signaling capacity. For example, cilia have been shown to alter their lengths in response to activation of ciliary G protein-coupled receptors. However, accurately and reproducibly measuring the lengths of numerous cilia is a time-consuming and labor-intensive procedure. Current approaches are also error and bias prone. Artificial intelligence (Ai) programs can be utilized to overcome many of these challenges due to capabilities that permit assimilation, manipulation, and optimization of extensive data sets. Here, we demonstrate that an Ai module can be trained to recognize cilia in images from both in vivo and in vitro samples. After using the trained Ai to identify cilia, we are able to design and rapidly utilize applications that analyze hundreds of cilia in a single sample for length, fluorescence intensity and co-localization. This unbiased approach increased our confidence and rigor when comparing samples from different primary neuronal preps in vitro as well as across different brain regions within an animal and between animals. Moreover, this technique can be used to reliably analyze cilia dynamics from any cell type and tissue in a high-throughput manner across multiple samples and treatment groups. Ultimately, Ai-based approaches will likely become standard as most fields move toward less biased and more reproducible approaches for image acquisition and analysis.

摘要

纤毛是基于微管的细胞附属物,作为许多哺乳动物细胞类型中多种信号通路的信号中心发挥作用。纤毛长度高度保守,受到严格调控,并且在不同的细胞类型和组织之间有所不同,并且已经被暗示直接影响它们的信号转导能力。例如,已经表明纤毛可以响应纤毛 G 蛋白偶联受体的激活而改变它们的长度。然而,准确且可重复地测量大量纤毛的长度是一项耗时且劳动密集型的过程。当前的方法也容易出现误差和偏差。人工智能 (Ai) 程序可以用于克服这些挑战,因为它们具有允许同化、操纵和优化大量数据集的功能。在这里,我们证明可以训练 Ai 模块来识别体内和体外样本图像中的纤毛。在使用经过训练的 Ai 来识别纤毛后,我们能够设计并快速利用应用程序来分析单个样本中的数百个纤毛的长度、荧光强度和共定位。这种无偏方法增加了我们在比较体外不同原代神经元制剂、动物内不同脑区以及动物之间的样本时的信心和严格性。此外,这种技术可以可靠地分析任何细胞类型和组织的纤毛动力学,以高通量方式在多个样本和处理组中进行。最终,基于 Ai 的方法可能会成为标准,因为大多数领域都朝着更无偏和更可重复的图像获取和分析方法发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11e2/8791558/b558b7a9b7c1/nihms-1771012-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验