Suppr超能文献

深度学习通过分析上下文特征实现组织学图像中异体移植细胞的个体分类。

Deep Learning Enables Individual Xenograft Cell Classification in Histological Images by Analysis of Contextual Features.

机构信息

Biomedical Imaging Group, School of Engineering, Ecole Polytechnique Fédéralé de Lausanne (EPFL), Lausanne, Switzerland.

EPFL Center for Imaging, Ecole Polytechnique Fédéralé de Lausanne (EPFL), Lausanne, Switzerland.

出版信息

J Mammary Gland Biol Neoplasia. 2021 Jun;26(2):101-112. doi: 10.1007/s10911-021-09485-4. Epub 2021 May 17.

Abstract

Patient-Derived Xenografts (PDXs) are the preclinical models which best recapitulate inter- and intra-patient complexity of human breast malignancies, and are also emerging as useful tools to study the normal breast epithelium. However, data analysis generated with such models is often confounded by the presence of host cells and can give rise to data misinterpretation. For instance, it is important to discriminate between xenografted and host cells in histological sections prior to performing immunostainings. We developed Single Cell Classifier (SCC), a data-driven deep learning-based computational tool that provides an innovative approach for automated cell species discrimination based on a multi-step process entailing nuclei segmentation and single cell classification. We show that human and murine cell contextual features, more than cell-intrinsic ones, can be exploited to discriminate between cell species in both normal and malignant tissues, yielding up to 96% classification accuracy. SCC will facilitate the interpretation of H&E- and DAPI-stained histological sections of xenografted human-in-mouse tissues and it is open to new in-house built models for further applications. SCC is released as an open-source plugin in ImageJ/Fiji available at the following link: https://github.com/Biomedical-Imaging-Group/SingleCellClassifier .

摘要

患者来源异种移植(PDX)是最能重现人类乳腺癌患者间和患者内复杂性的临床前模型,也正在成为研究正常乳腺上皮的有用工具。然而,使用此类模型生成的数据分析常常受到宿主细胞的干扰,并可能导致数据解读错误。例如,在进行免疫染色之前,有必要在组织切片中区分异种移植细胞和宿主细胞。我们开发了单细胞分类器(SCC),这是一种基于深度学习的数据驱动计算工具,为基于涉及核分割和单细胞分类的多步骤过程的自动细胞物种区分提供了一种创新方法。我们表明,人类和鼠类细胞的上下文特征,而不是细胞内在特征,可以用于区分正常和恶性组织中的细胞物种,分类准确率高达 96%。SCC 将有助于解释异种移植人源化小鼠组织的 H&E 和 DAPI 染色组织学切片,并可通过新的内部构建模型进行进一步应用。SCC 作为 ImageJ/Fiji 的开源插件发布,可在以下链接获得:https://github.com/Biomedical-Imaging-Group/SingleCellClassifier。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba50/8236058/3501795968c9/10911_2021_9485_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验