Suppr超能文献

Pan-Cancer 患者来源异种移植组织病理学图像库与基因组和病理学注释相结合,可实现深度学习分析。

A Pan-Cancer Patient-Derived Xenograft Histology Image Repository with Genomic and Pathologic Annotations Enables Deep Learning Analysis.

机构信息

The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.

Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.

出版信息

Cancer Res. 2024 Jul 2;84(13):2060-2072. doi: 10.1158/0008-5472.CAN-23-1349.

Abstract

Patient-derived xenografts (PDX) model human intra- and intertumoral heterogeneity in the context of the intact tissue of immunocompromised mice. Histologic imaging via hematoxylin and eosin (H&E) staining is routinely performed on PDX samples, which could be harnessed for computational analysis. Prior studies of large clinical H&E image repositories have shown that deep learning analysis can identify intercellular and morphologic signals correlated with disease phenotype and therapeutic response. In this study, we developed an extensive, pan-cancer repository of >1,000 PDX and paired parental tumor H&E images. These images, curated from the PDX Development and Trial Centers Research Network Consortium, had a range of associated genomic and transcriptomic data, clinical metadata, pathologic assessments of cell composition, and, in several cases, detailed pathologic annotations of neoplastic, stromal, and necrotic regions. The amenability of these images to deep learning was highlighted through three applications: (i) development of a classifier for neoplastic, stromal, and necrotic regions; (ii) development of a predictor of xenograft-transplant lymphoproliferative disorder; and (iii) application of a published predictor of microsatellite instability. Together, this PDX Development and Trial Centers Research Network image repository provides a valuable resource for controlled digital pathology analysis, both for the evaluation of technical issues and for the development of computational image-based methods that make clinical predictions based on PDX treatment studies. Significance: A pan-cancer repository of >1,000 patient-derived xenograft hematoxylin and eosin-stained images will facilitate cancer biology investigations through histopathologic analysis and contributes important model system data that expand existing human histology repositories.

摘要

患者来源异种移植(PDX)模型在免疫缺陷小鼠完整组织背景下体现了人类肿瘤内和肿瘤间的异质性。PDX 样本通常通过苏木精和伊红(H&E)染色进行组织学成像,这可以用于计算分析。先前对大型临床 H&E 图像存储库的研究表明,深度学习分析可以识别与疾病表型和治疗反应相关的细胞间和形态信号。在这项研究中,我们开发了一个广泛的、涵盖多种癌症的超过 1000 个 PDX 和配对的亲本肿瘤 H&E 图像存储库。这些图像是从 PDX 开发和试验中心研究网络联盟中精选出来的,具有一系列相关的基因组和转录组数据、临床元数据、细胞成分的病理评估,在某些情况下,还具有肿瘤、基质和坏死区域的详细病理注释。这些图像通过三个应用程序突出了其对深度学习的适用性:(i)用于肿瘤、基质和坏死区域的分类器的开发;(ii)用于预测异种移植移植性淋巴增生性疾病的预测器的开发;以及(iii)发表的微卫星不稳定性预测器的应用。总的来说,这个 PDX 开发和试验中心研究网络的图像存储库为受控数字病理学分析提供了有价值的资源,既可以评估技术问题,也可以开发基于计算图像的方法,根据 PDX 治疗研究做出临床预测。意义:超过 1000 个患者来源异种移植苏木精和伊红染色图像的泛癌症存储库将通过组织病理学分析促进癌症生物学研究,并提供重要的模型系统数据,扩展现有的人类组织学存储库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51f1/11217732/86e45c4d7027/can-23-1349_f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验