Dahlman Clayton J, Heo Sungyeon, Zhang Youtian, Reimnitz Lauren C, He Daniel, Tang Ming, Milliron Delia J
Materials Department, University of California, Santa Barbara, California 93106, United States.
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
J Am Chem Soc. 2021 Jun 9;143(22):8278-8294. doi: 10.1021/jacs.0c10628. Epub 2021 May 17.
Nanocrystalline anatase TiO is a robust model anode for Li insertion in batteries. The influence of nanocrystal size on the equilibrium potential and kinetics of Li insertion is investigated with in operando spectroelectrochemistry of thin film electrodes. Distinct visible and infrared responses correlate with Li insertion and electron accumulation, respectively, and these optical signals are used to deconvolute bulk Li insertion from other electrochemical responses, such as double-layer capacitance, pseudocapacitance, and electrolyte leakage. Electrochemical titration and phase-field simulations reveal that a difference in surface energies between anatase and lithiated phases of TiO systematically tunes the Li-insertion potentials with the particle size. However, the particle size does not affect the kinetics of Li insertion in ensemble electrodes. Rather, the Li-insertion rates depend on the applied overpotential, electrolyte concentration, and initial state of charge. We conclude that Li diffusivity and phase propagation are not rate limiting during Li insertion in TiO nanocrystals. Both of these processes occur rapidly once the transformation between the low-Li anatase and high-Li orthorhombic phases begins in a particle. Instead, discontinuous kinetics of Li accumulation in TiO particles prior to the phase transformations limits (dis)charging rates. We demonstrate a practical means to deconvolute the nonequilibrium charging behavior in nanocrystalline electrodes through a combination of colloidal synthesis, phase field simulations, and spectroelectrochemistry.
纳米晶锐钛矿TiO₂是电池中锂嵌入的一种稳健的模型阳极。通过薄膜电极的原位光谱电化学研究了纳米晶体尺寸对锂嵌入平衡电位和动力学的影响。不同的可见光和红外响应分别与锂嵌入和电子积累相关,并且这些光学信号用于从其他电化学响应(如双层电容、赝电容和电解质泄漏)中解卷积本体锂嵌入。电化学滴定和相场模拟表明,TiO₂的锐钛矿相和锂化相之间的表面能差异会随着粒径系统地调节锂嵌入电位。然而,粒径并不影响整体电极中锂嵌入的动力学。相反,锂嵌入速率取决于施加的过电位、电解质浓度和初始充电状态。我们得出结论,在TiO₂纳米晶体中锂嵌入过程中,锂扩散率和相传播不是速率限制因素。一旦低锂锐钛矿相和高锂正交相之间的转变在颗粒中开始,这两个过程都会迅速发生。相反,在相变之前TiO₂颗粒中锂积累的不连续动力学限制了充放电速率。我们展示了一种通过胶体合成、相场模拟和光谱电化学相结合的实用方法,来解卷积纳米晶电极中的非平衡充电行为。