Suppr超能文献

通过超快碳热冲击快速合成用于锂离子存储的快速充电TiNbO

Rapid Synthesis of Fast-Charging TiNbO for Lithium-Ion Storage via Ultrafast Carbothermal Shock.

作者信息

Hu Xianyu, Zhong Yunlei, Hu Xiaosai, Feng Xiyuan, Ye Fengying

机构信息

State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai 200433, China.

Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.

出版信息

Micromachines (Basel). 2025 Apr 22;16(5):490. doi: 10.3390/mi16050490.

Abstract

The development of fast-charging lithium-ion batteries urgently requires high-performance anode materials. In this paper, through an ultrafast carbothermal shock (CTS) strategy, titanium niobium oxide (TiNbO, TNO) with an optimized structure was successfully synthesized within 30 s. By regulating the synthesis temperature to 1200 °C, the TNO-1200 material was obtained. Its lattice parameters (a-axis: 17.6869 Å) and unit-cell volume (796.83 Å) were significantly expanded compared to the standard structure (a-axis: 17.51 Å, volume ~790 Å), which widened the lithium-ion migration channels. Rietveld refinement and atomic position analysis indicated that the partial overlap of Ti/Nb atoms and the cooperative displacement of oxygen atoms induced by CTS reduced the lithium-ion diffusion energy barrier. Meanwhile, the cation disorder suppressed the polarization effect. Electrochemical tests showed that after 3000 cycles at a current density of 10 C, the specific capacity of TNO-1200 reached 125 mAh/g, with a capacity retention rate of 98%. EDS mapping confirmed the uniform distribution of elements and the absence of impurity phases. This study provides an efficient synthesis strategy and theoretical basis for the design of high-performance fast-charging battery materials through atomic-scale structural engineering.

摘要

快速充电锂离子电池的发展迫切需要高性能的负极材料。本文通过超快碳热冲击(CTS)策略,在30秒内成功合成了结构优化的钛铌氧化物(TiNbO,TNO)。通过将合成温度调节至1200°C,获得了TNO-1200材料。与标准结构(a轴:17.51 Å,体积约790 Å)相比,其晶格参数(a轴:17.6869 Å)和晶胞体积(796.83 Å)显著扩大,拓宽了锂离子迁移通道。Rietveld精修和原子位置分析表明,CTS诱导的Ti/Nb原子部分重叠和氧原子协同位移降低了锂离子扩散能垒。同时,阳离子无序抑制了极化效应。电化学测试表明,在10 C电流密度下循环3000次后,TNO-1200的比容量达到125 mAh/g,容量保持率为98%。EDS图谱证实了元素的均匀分布且无杂质相。本研究通过原子尺度结构工程为高性能快速充电电池材料的设计提供了一种高效的合成策略和理论基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56c/12113901/fbbbbbeaab51/micromachines-16-00490-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验