Suppr超能文献

骶骨肿瘤切除术:大容量综合性癌症中心的围手术期结果。

Sacrectomy for sacral tumors: perioperative outcomes in a large-volume comprehensive cancer center.

机构信息

Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905 USA.

出版信息

Spine J. 2021 Nov;21(11):1908-1919. doi: 10.1016/j.spinee.2021.05.004. Epub 2021 May 14.

Abstract

BACKGROUND CONTEXT

Sacral tumors are incredibly rare lesions affecting fewer than one in every 10,000 persons. Reported perioperative morbidity rates range widely, varying from 30% to 70%, due to the relatively low volumes seen by most centers. Factors affecting perioperative outcome following sacrectomy remain ill-defined.

PURPOSE

To characterize perioperative outcomes of sacral tumor patients undergoing sacrectomy and identify independent risk factors of perioperative morbidity STUDY DESIGN/SETTING: Retrospective cohort study at a single comprehensive cancer center PATIENT SAMPLE: Consecutively treated sacral tumor patients (primary or metastatic) undergoing sacrectomy for oncologic resection between April 2013 and April 2020 OUTCOME MEASURES: Perioperative complications, hospital length of stay, non-home discharge, 30-day readmission, and 30-day reoperation METHODS: Details were gathered about tumor pathology and morphology, surgery performed, baseline medical comorbidities, preoperative lab data, and patient demographics. Stepwise multivariable regressions were conducted to identify independent risk factors of perioperative outcomes while evaluating predictive accuracy.

RESULTS

57 sacral tumor patients were included (mean age 55.5±13.0 years; 60% female). The complication, non-home discharge, 30-day readmission, and 30-day reoperation rates were 39%, 56%, 16%, and 14%, respectively. Independent predictors of perioperative complications included ASA>2 (OR=10.7; 95%CI [1.3, 86.0]; p=0.026), radicular pain (OR=10.9; p=0.014), platelet count (OR=0.989 per 10³/μL; p=0.049), and instrumentation (OR=10.7; p=0.009). Independent predictors of length of stay included iliac vessel involvement (β=15.8; p=0.005), larger tumor volume (β=0.027 per cm³; p<0.001), a staged procedure (β=10.0; p=0.018), and S1 nerve root sacrifice (OR=15.8; p=.011). The optimal model predictive of non-home discharge included bilateral S3-S5 or higher nerve root sacrifice (OR=3.9; p=0.054), instrumentation (OR=8.6; p=0.005), and vertical rectus abdominis musculocutaneous flap closure (OR=5.3; p=0.067). 30-day readmission was independently predicted by history of chronic kidney disease (OR=26.7; p=0.021), radicular pain (OR=8.1; p=0.039), and preoperative saddle anesthesia (OR=12.6; p=0.026). All multivariable models achieved good discrimination (AUC>0.8 and R>0.7).

CONCLUSION

Clinical and operative factors were important predictors of complications and 30-day readmission, while tumor-related and operative factors accounted for most of the variability in length of stay and non-home discharge.

摘要

背景语境

骶骨肿瘤是一种罕见的病变,发病率低于每 10000 人中的 1 人。由于大多数中心的病例数量相对较少,报告的围手术期发病率差异很大,从 30%到 70%不等。影响骶骨切除术后围手术期结果的因素仍未明确。

目的

描述接受骶骨肿瘤切除术的骶骨肿瘤患者的围手术期结果,并确定围手术期发病率的独立危险因素。

研究设计/设置:单中心综合癌症中心的回顾性队列研究

患者样本

2013 年 4 月至 2020 年 4 月期间接受骶骨肿瘤切除术以进行肿瘤切除的连续治疗的骶骨肿瘤患者(原发性或转移性)

结局指标

围手术期并发症、住院时间、非居家出院、30 天内再入院和 30 天内再次手术

方法

收集了肿瘤病理和形态、手术方式、基线合并症、术前实验室数据和患者人口统计学数据的详细信息。进行逐步多变量回归以确定围手术期结果的独立危险因素,同时评估预测准确性。

结果

共纳入 57 例骶骨肿瘤患者(平均年龄 55.5±13.0 岁;60%为女性)。并发症、非居家出院、30 天内再入院和 30 天内再次手术的发生率分别为 39%、56%、16%和 14%。围手术期并发症的独立预测因素包括 ASA>2(OR=10.7;95%CI [1.3, 86.0];p=0.026)、神经根痛(OR=10.9;p=0.014)、血小板计数(OR=每 10³/μL 增加 0.989;p=0.049)和器械使用(OR=10.7;p=0.009)。住院时间的独立预测因素包括髂血管受累(β=15.8;p=0.005)、更大的肿瘤体积(β=每立方厘米增加 0.027;p<0.001)、分期手术(β=10.0;p=0.018)和 S1 神经根牺牲(OR=15.8;p=0.011)。非居家出院的最佳预测模型包括双侧 S3-S5 或更高水平的神经根牺牲(OR=3.9;p=0.054)、器械使用(OR=8.6;p=0.005)和垂直腹直肌肌皮瓣闭合(OR=5.3;p=0.067)。30 天内再入院的独立预测因素包括慢性肾脏病病史(OR=26.7;p=0.021)、神经根痛(OR=8.1;p=0.039)和术前鞍区麻醉(OR=12.6;p=0.026)。所有多变量模型均具有良好的区分度(AUC>0.8 和 R>0.7)。

结论

临床和手术因素是并发症和 30 天内再入院的重要预测因素,而肿瘤相关和手术因素则是住院时间和非居家出院的主要影响因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验