Suppr超能文献

不同融合影像组学预测骶骨良恶性肿瘤的比较:一项初步研究。

Comparison of Different Fusion Radiomics for Predicting Benign and Malignant Sacral Tumors: A Pilot Study.

机构信息

Department of Radiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China.

Intelligent Manufacturing Research Institute, Visual 3D Medical Science and Technology Development, Fengtai District, No. 186 South Fourth Ring Road West, Beijing, 100071, People's Republic of China.

出版信息

J Imaging Inform Med. 2024 Oct;37(5):2415-2427. doi: 10.1007/s10278-024-01134-6. Epub 2024 May 8.

Abstract

Differentiating between benign and malignant sacral tumors is crucial for determining appropriate treatment options. This study aims to develop two benchmark fusion models and a deep learning radiomic nomogram (DLRN) capable of distinguishing between benign and malignant sacral tumors using multiple imaging modalities. We reviewed axial T2-weighted imaging (T2WI) and non-contrast computed tomography (NCCT) of 134 patients pathologically confirmed as sacral tumors. The two benchmark fusion models were developed using fusion deep learning (DL) features and fusion classical machine learning (CML) features from multiple imaging modalities, employing logistic regression, K-nearest neighbor classification, and extremely randomized trees. The two benchmark models exhibiting the most robust predictive performance were merged with clinical data to formulate the DLRN. Performance assessment involved computing the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy, negative predictive value (NPV), and positive predictive value (PPV). The DL benchmark fusion model demonstrated superior performance compared to the CML fusion model. The DLRN, identified as the optimal model, exhibited the highest predictive performance, achieving an accuracy of 0.889 and an AUC of 0.961 in the test sets. Calibration curves were utilized to evaluate the predictive capability of the models, and decision curve analysis (DCA) was conducted to assess the clinical net benefit of the DLR model. The DLRN could serve as a practical predictive tool, capable of distinguishing between benign and malignant sacral tumors, offering valuable information for risk counseling, and aiding in clinical treatment decisions.

摘要

区分良恶性骶骨肿瘤对于确定适当的治疗方案至关重要。本研究旨在开发两种基准融合模型和一种深度学习放射组学列线图(DLRN),以利用多种成像方式区分良恶性骶骨肿瘤。我们回顾了 134 例经病理证实为骶骨肿瘤患者的轴向 T2 加权成像(T2WI)和非对比计算机断层扫描(NCCT)。使用逻辑回归、K 最近邻分类和极端随机树,从多种成像方式中开发了两种基于基准融合的深度学习(DL)特征和融合经典机器学习(CML)特征的基准融合模型。合并表现出最稳健预测性能的两种基准模型与临床数据,制定深度学习放射组学列线图(DLRN)。性能评估包括计算受试者工作特征曲线(ROC)下的面积(AUC)、灵敏度、特异性、准确性、阴性预测值(NPV)和阳性预测值(PPV)。DL 基准融合模型的表现优于 CML 融合模型。作为最优模型的 DLRN 表现出最高的预测性能,在测试集中的准确率为 0.889,AUC 为 0.961。校准曲线用于评估模型的预测能力,决策曲线分析(DCA)用于评估 DLR 模型的临床净收益。DLRN 可以作为一种实用的预测工具,能够区分良恶性骶骨肿瘤,为风险咨询提供有价值的信息,并辅助临床治疗决策。

相似文献

引用本文的文献

1
Functionalized zeolite regulates bone metabolic microenvironment.功能化沸石调节骨代谢微环境。
Mater Today Bio. 2025 Feb 5;31:101558. doi: 10.1016/j.mtbio.2025.101558. eCollection 2025 Apr.

本文引用的文献

9
The management of sacral tumours.骶骨肿瘤的管理
Bone Joint J. 2022 Dec;104-B(12):1284-1291. doi: 10.1302/0301-620X.104B12.BJJ-2022-0734.R1.
10
TransMorph: Transformer for unsupervised medical image registration.TransMorph:用于无监督医学图像配准的转换器。
Med Image Anal. 2022 Nov;82:102615. doi: 10.1016/j.media.2022.102615. Epub 2022 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验