Optometry and Visual Sciences, City, University of London, London, UK.
ASST Santi Paolo e Carlo, University of Milan, Milan, Italy.
Transl Vis Sci Technol. 2021 Feb 5;10(2):21. doi: 10.1167/tvst.10.2.21.
Quantify the spatial error in mapping perimetric stimuli for structure-function analysis resulting from the choice of mapping scheme and eye movements.
We analyzed data from 17 healthy and 30 glaucomatous participants. Structural data of the macula were collected with a spectral-domain optical coherence tomography. We extracted eye movement data and projection locations from a fundus tracking perimeter and quantified the retinal location mapping error (distance between the actual and the intended stimulus location in degrees from the fovea) for non-tracked perimetry in a 10-2 grid. First, we evaluated whether rotating the 10-2 grid to match the fovea-disc axis improved mapping accuracy. Second, we analyzed the effect of eccentric fixation, random eye movements, and gaze attraction from seen stimuli on projection accuracy and spread of fixation, measured with the 95% bivariate contour ellipse area (95% BCEA). We used generalized linear mixed models for our statistical analyses.
Rotating the 10-2 grid to match the fovea-disc axis significantly increased the mapping error (P < 0.001). Eye movements evoked by seen stimuli significantly increased the projection error during the test (P < 0.001). Removing such eye movements significantly reduced the 95% BCEA (P < 0.001). Eccentric fixation also significantly contributed to the projection error (P < 0.001), and its effect was larger in glaucoma patients (P < 0.001).
Rotating the perimetric grid to match the fovea-disc axis is not recommended. Fixation eccentricity and instability should be taken into account for structure-function analyses.
Accounting for fixation can improve structure-function mapping in glaucoma.
量化由于映射方案和眼球运动选择而导致的针对结构-功能分析的周边刺激映射的空间误差。
我们分析了 17 名健康受试者和 30 名青光眼受试者的数据。使用谱域光相干断层扫描获取黄斑的结构数据。我们从眼底跟踪周边仪中提取眼球运动数据和投影位置,并在 10-2 网格中量化非跟踪周边视野的视网膜位置映射误差(从黄斑到实际和预期刺激位置的距离,以度为单位)。首先,我们评估将 10-2 网格旋转以匹配视盘-黄斑轴是否可以提高映射精度。其次,我们分析了偏心注视、随机眼球运动和从可见刺激引起的凝视吸引力对视点准确性和注视扩散的影响,用 95%双变量轮廓椭圆面积(95% BCEA)进行测量。我们使用广义线性混合模型进行统计分析。
将 10-2 网格旋转以匹配视盘-黄斑轴显著增加了映射误差(P < 0.001)。可见刺激引起的眼球运动在测试过程中显著增加了投影误差(P < 0.001)。去除这些眼球运动显著降低了 95% BCEA(P < 0.001)。偏心注视也显著导致了投影误差(P < 0.001),并且在青光眼患者中其影响更大(P < 0.001)。
不建议将周边网格旋转以匹配视盘-黄斑轴。在进行结构-功能分析时,应考虑注视的偏心和不稳定性。
杨雪