Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States.
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.
J Phys Chem Lett. 2021 May 27;12(20):4902-4909. doi: 10.1021/acs.jpclett.1c01142. Epub 2021 May 18.
Machine-learned potential energy surfaces (PESs) for molecules with more than 10 atoms are typically forced to use lower-level electronic structure methods such as density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2). While these are efficient and realistic, they fall short of the accuracy of the "gold standard" coupled-cluster method, especially with respect to reaction and isomerization barriers. We report a major step forward in applying a Δ-machine learning method to the challenging case of acetylacetone, whose MP2 barrier height for H-atom transfer is low by roughly 1.1 kcal/mol relative to the benchmark CCSD(T) barrier of 3.2 kcal/mol. From a database of 2151 local CCSD(T) energies and training with as few as 430 energies, we obtain a new PES with a barrier of 3.5 kcal/mol in agreement with the LCCSD(T) barrier of 3.5 kcal/mol and close to the benchmark value. Tunneling splittings due to H-atom transfer are calculated using this new PES, providing improved estimates over previous ones obtained using an MP2-based PES.
对于超过 10 个原子的分子,机器学习势能面 (PES) 通常需要使用更低阶的电子结构方法,如密度泛函理论 (DFT) 和二阶 Møller-Plesset 微扰理论 (MP2)。虽然这些方法高效且现实,但它们的准确性不及“金标准”耦合簇方法,特别是在反应和异构化势垒方面。我们报告了在应用 Δ-机器学习方法方面的重大进展,该方法应用于乙酰丙酮这一具有挑战性的案例,其 H 原子转移的 MP2 势垒高度相对基准 CCSD(T) 势垒 3.2 kcal/mol 低约 1.1 kcal/mol。从一个包含 2151 个局部 CCSD(T) 能量的数据库中,仅用 430 个能量进行训练,我们获得了一个新的 PES,其势垒为 3.5 kcal/mol,与 LCCSD(T) 势垒 3.5 kcal/mol 一致,且接近基准值。使用这个新的 PES 计算了 H 原子转移引起的隧道分裂,提供了比以前使用基于 MP2 的 PES 获得的更准确的估计。