Suppr超能文献

基于深度张量神经网络的密度泛函紧束缚精确多体排斥势

Accurate Many-Body Repulsive Potentials for Density-Functional Tight Binding from Deep Tensor Neural Networks.

作者信息

Stöhr Martin, Medrano Sandonas Leonardo, Tkatchenko Alexandre

机构信息

Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg.

出版信息

J Phys Chem Lett. 2020 Aug 20;11(16):6835-6843. doi: 10.1021/acs.jpclett.0c01307. Epub 2020 Aug 7.

Abstract

We combine density-functional tight binding (DFTB) with deep tensor neural networks (DTNN) to maximize the strengths of both approaches in predicting structural, energetic, and vibrational molecular properties. The DTNN is used to construct a nonlinear model for the localized many-body interatomic repulsive energy, which so far has been treated in an atom-pairwise manner in DFTB. Substantially improving upon standard DFTB and DTNN, the resulting DFTB-NN model yields accurate predictions of atomization and isomerization energies, equilibrium geometries, vibrational frequencies, and dihedral rotation profiles for a large variety of organic molecules compared to the hybrid DFT-PBE0 functional. Our results highlight the potential of combining semiempirical electronic-structure methods with physically motivated machine learning approaches for predicting localized many-body interactions. We conclude by discussing future advancements of the DFTB-NN approach that could enable chemically accurate electronic-structure calculations for systems with tens of thousands of atoms.

摘要

我们将密度泛函紧束缚(DFTB)与深度张量神经网络(DTNN)相结合,以充分发挥这两种方法在预测分子的结构、能量和振动性质方面的优势。DTNN用于构建局部多体原子间排斥能的非线性模型,到目前为止,在DFTB中该能量一直是以原子对的方式处理的。与混合密度泛函PBE0相比,由此产生的DFTB-NN模型在很大程度上改进了标准DFTB和DTNN,能够对各种有机分子的原子化能、异构化能、平衡几何结构、振动频率和二面角旋转轮廓进行准确预测。我们的结果突出了将半经验电子结构方法与基于物理动机的机器学习方法相结合来预测局部多体相互作用的潜力。最后,我们讨论了DFTB-NN方法未来的进展,这些进展有望实现对含有数万个原子的系统进行化学精度的电子结构计算。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验