Stöhr Martin, Medrano Sandonas Leonardo, Tkatchenko Alexandre
Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg.
J Phys Chem Lett. 2020 Aug 20;11(16):6835-6843. doi: 10.1021/acs.jpclett.0c01307. Epub 2020 Aug 7.
We combine density-functional tight binding (DFTB) with deep tensor neural networks (DTNN) to maximize the strengths of both approaches in predicting structural, energetic, and vibrational molecular properties. The DTNN is used to construct a nonlinear model for the localized many-body interatomic repulsive energy, which so far has been treated in an atom-pairwise manner in DFTB. Substantially improving upon standard DFTB and DTNN, the resulting DFTB-NN model yields accurate predictions of atomization and isomerization energies, equilibrium geometries, vibrational frequencies, and dihedral rotation profiles for a large variety of organic molecules compared to the hybrid DFT-PBE0 functional. Our results highlight the potential of combining semiempirical electronic-structure methods with physically motivated machine learning approaches for predicting localized many-body interactions. We conclude by discussing future advancements of the DFTB-NN approach that could enable chemically accurate electronic-structure calculations for systems with tens of thousands of atoms.
我们将密度泛函紧束缚(DFTB)与深度张量神经网络(DTNN)相结合,以充分发挥这两种方法在预测分子的结构、能量和振动性质方面的优势。DTNN用于构建局部多体原子间排斥能的非线性模型,到目前为止,在DFTB中该能量一直是以原子对的方式处理的。与混合密度泛函PBE0相比,由此产生的DFTB-NN模型在很大程度上改进了标准DFTB和DTNN,能够对各种有机分子的原子化能、异构化能、平衡几何结构、振动频率和二面角旋转轮廓进行准确预测。我们的结果突出了将半经验电子结构方法与基于物理动机的机器学习方法相结合来预测局部多体相互作用的潜力。最后,我们讨论了DFTB-NN方法未来的进展,这些进展有望实现对含有数万个原子的系统进行化学精度的电子结构计算。