Marquette University School of Dentistry, Milwaukee, Wisconsin 53201-1881, United States.
Protein Research Center, Shahid Beheshti University G.C., Tehran 19839-69411, Iran.
ACS Appl Mater Interfaces. 2021 Jun 2;13(21):24370-24384. doi: 10.1021/acsami.0c22140. Epub 2021 May 18.
The purpose of the present study is to characterize poly(d,l-lactide--glycolide) (PLGA) composite microcarriers for vascular endothelial growth factor (VEGF) delivery. To reduce the initial burst release and protect the bioactivity, VEGF is encapsulated in soybean l-α-phosphatidylethanolamine (PE) and l-α-phosphatidylcholine (PC) anhydrous reverse micelle (VEGF-RM) nanoparticles. Also, mesoporous nano-hexagonal Mg(OH) nanostructure (MNS)-loaded PE/PC anhydrous reverse micelle (MNS-RM) nanoparticles are synthesized to suppress the induced inflammation of PLGA acidic byproducts and regulate the release profile. The flow-focusing microfluidic geometry platforms are used to fabricate different combinations of PLGA composite microspheres (PLGA-CMPs) with MNSs, MNS-RM, VEGF-RM, and native VEGF. The essential parameters of each formulation, such as release profiles, encapsulation efficacy, bioactivity, inflammatory response, and cytotoxicity, are investigated by in vitro and in vivo studies. The results indicate that generated acidic byproducts during the hydrolytic degradation process of PLGA can be buffered, and pH values inside and outside microspheres can remain steady during degradation by MNSs. Furthermore, the significant improvement in the stability of the encapsulated VEGF is confirmed by the bioactivity assay. In vitro release study shows that the VEGF initial burst release is well minimized in the present microcarriers. The present monodisperse PLGA-CMPs can be widely used in various tissue engineering and therapeutic applications.
本研究旨在对聚(丙交酯-乙交酯)(PLGA)复合微载体进行表征,以用于血管内皮生长因子(VEGF)的递送。为了减少初始突释并保护生物活性,将 VEGF 包封在大豆 l-α-磷脂酰乙醇胺(PE)和 l-α-磷脂酰胆碱(PC)无水反胶束(VEGF-RM)纳米颗粒中。此外,还合成了介孔纳米六方 Mg(OH)纳米结构(MNS)负载的 PE/PC 无水反胶束(MNS-RM)纳米颗粒,以抑制 PLGA 酸性副产物引起的炎症,并调节释放曲线。采用流聚焦微流控几何平台,制备了不同组合的载有 MNS、MNS-RM、VEGF-RM 和天然 VEGF 的 PLGA 复合微球(PLGA-CMPs)。通过体外和体内研究,考察了每种配方的关键参数,如释放曲线、包封效率、生物活性、炎症反应和细胞毒性。结果表明,MNS 可缓冲 PLGA 水解降解过程中产生的酸性副产物,并且在降解过程中微球内外的 pH 值可保持稳定。此外,通过生物活性测定证实了封装的 VEGF 稳定性显著提高。体外释放研究表明,本微载体可显著减少 VEGF 的初始突释。本单分散 PLGA-CMPs 可广泛应用于各种组织工程和治疗应用。