Suppr超能文献

聚乳酸-羟基乙酸共聚物微球控释血管内皮生长因子:体外特性分析及其在聚己内酯延胡索酸酯神经导管中的应用。

Controlled release of vascular endothelial growth factor using poly-lactic-co-glycolic acid microspheres: in vitro characterization and application in polycaprolactone fumarate nerve conduits.

机构信息

Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

Acta Biomater. 2012 Feb;8(2):511-8. doi: 10.1016/j.actbio.2011.10.001. Epub 2011 Oct 7.

Abstract

Vascular endothelial growth factor (VEGF) is a potent angiogenic stimulator. Controlled release of such stimulators may enhance and guide the vascularization process, and when applied in a nerve conduit may play a role in nerve regeneration. We report the fabrication and in vitro characterization of poly-lactic-co-glycolic acid (PLGA) microspheres encapsulating VEGF and the in vivo application of nerve conduits supplemented with VEGF-containing microspheres. PLGA microspheres containing VEGF were prepared by the double emulsion-solvent evaporation technique. This yielded 83.16% of microspheres with a diameter <53 μm. VEGF content measured by ELISA indicated 93.79±10.64% encapsulation efficiency. Release kinetics were characterized by an initial burst release of 67.6±8.25% within the first 24h, followed by consistent release of approximately 0.34% per day for 4 weeks. Bioactivity of the released VEGF was tested by human umbilical vein endothelial cell (HUVEC) proliferation assay. VEGF released at all time points enhanced HUVEC proliferation, confirming that VEGF retained its bioactivity throughout the 4 week time period. When the microsphere delivery system was placed in a biosynthetic nerve scaffold robust nerve regeneration was observed. This study established a novel system for controlled release of growth factors and enables in vivo studies of nerve conduits conditioned with this system.

摘要

血管内皮生长因子(VEGF)是一种有效的血管生成刺激剂。控制释放这种刺激剂可以增强和引导血管生成过程,当应用于神经导管时,可能在神经再生中发挥作用。我们报告了聚乳酸-共-羟基乙酸(PLGA)微球包封 VEGF 的制备和体外特性,以及含有 VEGF 微球的神经导管的体内应用。通过双乳液-溶剂蒸发技术制备了含有 VEGF 的 PLGA 微球。这产生了 83.16%的直径<53μm的微球。通过 ELISA 测量 VEGF 含量,表明包封效率为 93.79±10.64%。通过初始突释释放 67.6±8.25%,在最初的 24 小时内,随后在 4 周内每天持续释放约 0.34%,对释放动力学进行了特征描述。通过人脐静脉内皮细胞(HUVEC)增殖测定测试释放的 VEGF 的生物活性。所有时间点释放的 VEGF 均增强了 HUVEC 的增殖,证实 VEGF 在整个 4 周时间内保持其生物活性。当将微球输送系统放置在生物合成的神经支架中时,观察到了强大的神经再生。这项研究建立了一种用于生长因子控释的新系统,并能够对用该系统调理的神经导管进行体内研究。

相似文献

5
Dual-layer conduit containing VEGF-A - Transfected Schwann cells promotes peripheral nerve regeneration via angiogenesis.
Acta Biomater. 2024 May;180:323-336. doi: 10.1016/j.actbio.2024.03.029. Epub 2024 Mar 30.
6
Enhancement of VEGF-Mediated Angiogenesis by 2-N,6-O-Sulfated Chitosan-Coated Hierarchical PLGA Scaffolds.
ACS Appl Mater Interfaces. 2015 May 13;7(18):9982-90. doi: 10.1021/acsami.5b02324. Epub 2015 May 4.
7
Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.
Biomaterials. 1998 Nov;19(21):1945-55. doi: 10.1016/s0142-9612(98)00099-4.
10
Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres.
Invest Ophthalmol Vis Sci. 2003 Jan;44(1):290-9. doi: 10.1167/iovs.01-1156.

引用本文的文献

1
Recent Advances in the Preparation of Protein/peptide Microspheres by Solvent Evaporation Method.
Curr Pharm Biotechnol. 2024;25(14):1807-1817. doi: 10.2174/0113892010261032231214115415.
2
Injectable neural hydrogel as therapeutic delivery vehicle.
Regen Eng Transl Med. 2023 Sep;9(3):424-430. doi: 10.1007/s40883-022-00292-9. Epub 2023 Jan 26.
3
Recent Developments in Biopolymer-Based Hydrogels for Tissue Engineering Applications.
Biomolecules. 2023 Feb 2;13(2):280. doi: 10.3390/biom13020280.
4
A Protein Composite Neural Scaffold Modulates Astrocyte Migration and Transcriptome Profile.
Macromol Biosci. 2022 Apr;22(4):e2100406. doi: 10.1002/mabi.202100406. Epub 2022 Jan 18.
5
The synthetic artificial stem cell (SASC): Shifting the paradigm of cell therapy in regenerative engineering.
Proc Natl Acad Sci U S A. 2022 Jan 11;119(2). doi: 10.1073/pnas.2116865118.
7
Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules.
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4102-4127. doi: 10.1021/acsbiomaterials.0c01784. Epub 2021 Jun 17.

本文引用的文献

1
In vitro and in vivo release of nerve growth factor from biodegradable poly-lactic-co-glycolic-acid microspheres.
J Biomed Mater Res A. 2010 Dec 15;95(4):1067-73. doi: 10.1002/jbm.a.32900. Epub 2010 Sep 28.
3
Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth.
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1959-65. doi: 10.1152/ajpheart.00199.2009. Epub 2010 Mar 12.
4
Active blood vessel formation in the ischemic hindlimb mouse model using a microsphere/hydrogel combination system.
Pharm Res. 2010 May;27(5):767-74. doi: 10.1007/s11095-010-0067-0. Epub 2010 Mar 10.
5
Local and sustained vascular endothelial growth factor delivery for angiogenesis using an injectable system.
Pharm Res. 2009 Jul;26(7):1739-44. doi: 10.1007/s11095-009-9884-4. Epub 2009 Apr 21.
6
Poly (lactic-co-glycolic acid) as a controlled release delivery device.
J Mater Sci Mater Med. 2009 Aug;20(8):1669-75. doi: 10.1007/s10856-009-3727-z. Epub 2009 Mar 13.
8
Bioactivation of collagen matrices through sustained VEGF release from PLGA microspheres.
J Biomed Mater Res A. 2010 Jan;92(1):94-102. doi: 10.1002/jbm.a.32332.
9
Bioinspired tissue engineering: the great promise of protein delivery technologies.
Int J Pharm. 2008 Dec 8;364(2):281-97. doi: 10.1016/j.ijpharm.2008.04.030. Epub 2008 Apr 26.
10
Nerve conduits and growth factor delivery in peripheral nerve repair.
J Peripher Nerv Syst. 2007 Jun;12(2):65-82. doi: 10.1111/j.1529-8027.2007.00125.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验