Department of Biomedical-Chemical Engineering and Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea.
Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi, 13488, Republic of Korea.
Tissue Eng Regen Med. 2021 Aug;18(4):613-622. doi: 10.1007/s13770-021-00338-z. Epub 2021 Apr 20.
Poly(lactic-co-glycolic acid) (PLGA) microspheres have been actively used in various pharmaceutical formulations because they can sustain active pharmaceutical ingredient release and are easy to administer into the body using a syringe. However, the acidic byproducts produced by the decomposition of PLGA cause inflammatory reactions in surrounding tissues, limiting biocompatibility. Magnesium hydroxide (MH), an alkaline ceramic, has attracted attention as a potential additive because it has an acid-neutralizing effect.
To improve the encapsulation efficiency of hydrophilic MH, the MH particles were capped with hydrophobic ricinoleic acid (RA-MH). PLGA microspheres encapsulated with RA-MH particles were manufactured by the O/W method. To assess the in vitro cytotoxicity of the degradation products of PLGA, MH/PLGA, and RA-MH/PLGA microspheres, CCK-8 and Live/Dead assays were performed with NIH-3T3 cells treated with different concentrations of their degradation products. In vitro anti-inflammatory effect of RA-MH/PLGA microspheres was evaluated with quantitative measurement of pro-inflammatory cytokines.
The synthesized RA-MH was encapsulated in PLGA microspheres and displayed more than four times higher loading content than pristine MH. The PLGA microspheres encapsulated with RA-MH had an acid-neutralizing effect better than that of the control group. In an in vitro cell experiment, the degradation products obtained from RA-MH/PLGA microspheres exhibited higher biocompatibility than the degradation products obtained from PLGA microspheres. Additionally, the RA-MH/PLGA microsphere group showed an excellent anti-inflammatory effect.
Our results proved that RA-MH-encapsulated PLGA microspheres showed excellent biocompatibility with an anti-inflammatory effect. This technology can be applied to drug delivery and tissue engineering to treat various incurable diseases in the future.
聚(乳酸-共-乙醇酸)(PLGA)微球因其能持续释放活性药物成分且易于通过注射器施用于体内而在各种药物制剂中得到了广泛应用。然而,PLGA 分解产生的酸性副产物会引起周围组织的炎症反应,限制了其生物相容性。作为一种潜在的添加剂,碱性陶瓷氢氧化镁(MH)因其具有中和酸的作用而受到关注。
为了提高亲水性 MH 的包封效率,将 MH 颗粒用疏水性蓖麻油酸(RA-MH)进行封端。通过 O/W 法制备包封 RA-MH 颗粒的 PLGA 微球。为了评估 PLGA、MH/PLGA 和 RA-MH/PLGA 微球降解产物的体外细胞毒性,用不同浓度降解产物处理 NIH-3T3 细胞,通过 CCK-8 和 Live/Dead 实验进行评估。通过定量测量促炎细胞因子评估 RA-MH/PLGA 微球的体外抗炎效果。
合成的 RA-MH 被包封在 PLGA 微球中,其载药量比原始 MH 高四倍以上。包封 RA-MH 的 PLGA 微球具有比对照组更好的中和酸作用。在体外细胞实验中,RA-MH/PLGA 微球的降解产物表现出比 PLGA 微球的降解产物更高的生物相容性。此外,RA-MH/PLGA 微球组表现出优异的抗炎效果。
我们的结果证明,包封 RA-MH 的 PLGA 微球具有出色的生物相容性和抗炎效果。这项技术可以应用于药物输送和组织工程,以治疗未来各种无法治愈的疾病。