Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Museum National d'Histoire Naturelle, Sorbonne Université, Paris, France.
Department of Earth and Planetary Science, Harvard University, Cambridge, MA, USA.
Nat Commun. 2021 May 18;12(1):2913. doi: 10.1038/s41467-021-23137-5.
Highly siderophile elements (HSE), including platinum, provide powerful geochemical tools for studying planet formation. Late accretion of chondritic components to Earth after core formation has been invoked as the main source of mantle HSE. However, core formation could also have contributed to the mantle's HSE content. Here we present measurements of platinum metal-silicate partitioning coefficients, obtained from laser-heated diamond anvil cell experiments, which demonstrate that platinum partitioning into metal is lower at high pressures and temperatures. Consequently, the mantle was likely enriched in platinum immediately following core-mantle differentiation. Core formation models that incorporate these results and simultaneously account for collateral geochemical constraints, lead to excess platinum in the mantle. A subsequent process such as iron exsolution or sulfide segregation is therefore required to remove excess platinum and to explain the mantle's modern HSE signature. A vestige of this platinum-enriched mantle can potentially account for Os-enriched ocean island basalt lavas.
亲铁元素(HSE),包括铂,为研究行星形成提供了强大的地球化学工具。在核心形成后,球粒陨石成分的后期加入被认为是地幔 HSE 的主要来源。然而,核心形成也可能为地幔的 HSE 含量做出了贡献。在这里,我们展示了从激光加热金刚石压腔实验中获得的铂-硅酸盐分配系数的测量结果,这些结果表明,在高压和高温下,铂进入金属的分配系数较低。因此,在核心-地幔分异之后,地幔中很可能富含铂。将这些结果纳入其中并同时考虑到附带的地球化学限制的核心形成模型,导致地幔中存在过量的铂。因此,需要随后的过程(如铁出溶或硫化物分离)来去除过量的铂,并解释地幔的现代 HSE 特征。这种富含铂的地幔的残余物可能可以解释富含 Os 的大洋岛玄武岩熔岩。