Badro James, Brodholt John P, Piet Hélène, Siebert Julien, Ryerson Frederick J
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, UMR CNRS 7154, 75005 Paris, France; Earth and Planetary Science Laboratory, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
Department of Earth Sciences, University College London, London WC1E 6BT, United Kingdom;
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12310-4. doi: 10.1073/pnas.1505672112. Epub 2015 Sep 21.
The formation of Earth's core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal-silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Here we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth's magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. This core formation model produces a core that contains 2.7-5% oxygen along with 2-3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium.
地球核心的形成在核心和地幔中留下了地球物理和地球化学特征,这些特征一直留存至今。地震学研究表明,地核的密度要比纯铁小,因此必定含有轻元素,而源自地幔的岩石的地球化学特征则显示出亲铁元素大量缺失和分馏现象。这两个特征都源自原始地球时期的金属-硅酸盐分异过程,并且取决于核心形成过程中占主导地位的物理化学条件的性质。迄今为止,核心形成模型仅试图分别探讨地核和地幔成分特征的演变,而非寻求联合解决方案。在此,我们结合实验岩石学、地球化学、矿物物理学和地震学,来确定一系列满足这两个限制条件的核心形成条件。我们发现,核心形成发生在一个炽热(液相线)但深度适中的岩浆海洋中,深度不超过1800千米,氧化还原条件比当今地球更为氧化。这一新情景与当前认为核心形成发生在还原条件下的观点相悖,它提出地球的岩浆海洋最初是氧化的,并且随着时间的推移通过氧气进入地核而变得还原。这个核心形成模型产生的地核含有2.7%-5%的氧以及2%-3.6%的硅,其密度和速度与径向地震模型相符,并且留下了一个与观测到的地幔中镍、钴、铬和钒的丰度相匹配的硅酸盐地幔。