Jeyasudha J, Usha G
Department of Computer Science and Engineering, SRM Insititute of Science and Technolgy, Chennai, Tamilnadu India.
Department of Software Engineering, SRM Insititute of Science and Technolgy, Chennai, Tamilnadu India.
Wirel Pers Commun. 2022;127(2):1283-1309. doi: 10.1007/s11277-021-08577-y. Epub 2021 May 13.
With an advent of social networks, spamming has posted the most important serious issues among the users. These are termed as influential users who spread the spam messages in the community which has created the social and psychological impact on the users. Hence the identification of such influential nodes has become the most important research challenge. The paper proposes with a method to (1) detect a community using community algorithms with the Laplacian Transition Matrix that is the popular hashtag (2) to find the Influential nodes or users in the Community using Intelligent centrality measure's (3) The implementation of machine learning algorithm to classify the intensity of users.The extensive experimentations has been carried out using the COVID-19 datasets with the different machine learning algorithms. The methodologies SVM and PCA provide the accuracy of 98.6 than the linear regression for using the new centrality measures and the other scores like NMI, RMS, are found for the methods. As a result finding out the Influential nodes will help us find the Spammy and genuine accounts easily.
随着社交网络的出现,垃圾信息发布已成为用户面临的最重要的严重问题。这些传播垃圾信息的用户被称为有影响力的用户,他们在社区中传播垃圾信息,对用户造成了社会和心理影响。因此,识别此类有影响力的节点已成为最重要的研究挑战。本文提出了一种方法:(1)使用带有拉普拉斯转移矩阵(即流行的主题标签)的社区算法来检测社区;(2)使用智能中心性度量来找到社区中有影响力的节点或用户;(3)实施机器学习算法对用户的影响力强度进行分类。使用新冠肺炎数据集和不同的机器学习算法进行了广泛的实验。与使用新中心性度量的线性回归相比,支持向量机(SVM)和主成分分析(PCA)方法的准确率达到了98.6%,并且还为这些方法找到了其他分数,如标准化互信息(NMI)、均方根误差(RMS)。结果表明,找出有影响力的节点将有助于我们轻松识别垃圾账号和真实账号。