Nelson Amy L Hawn, Zanti Sharon
University of Pennsylvania.
Int J Popul Data Sci. 2020 Sep 30;5(1):1367. doi: 10.23889/ijpds.v5i1.1367.
Data integration by local and state governments is undertaken for the public good to support the interconnected needs of families and communities. Though data infrastructure is a powerful tool to support equity-oriented reforms, racial equity is rarely centered or prioritized as a core goal for data integration. This raises fundamental concerns, as integrated data increasingly provide the raw materials for evaluation, research, and risk modeling. Generally, institutions have not adequately examined and acknowledged structural bias in their history, or the ways in which data reflect systemic racial inequities in the development and administration of policies and programs. Meanwhile, civic data users and the public are rarely consulted in the development and use of data systems.
This paper presents a framework and site-based examples of "Work in Action" that were collaboratively generated by a civic data stakeholder workgroup from across the U.S. in 2019-2020.
Purposive sampling was used to curate a diverse 15-person workgroup that used participatory action research and public deliberation to co-create a framework of best practices.
This framework aims to support agencies seeking to acknowledge and compensate for the harms and bias baked into data and practice. It is organized across six stages of the administrative data life cycle-planning, data collection, data access, use of algorithms/statistical tools, analysis, and reporting and dissemination. For each stage, the framework includes positive and problematic practices for centering racial equity, with site-based examples of "Work in Action" from across the U.S. Using this framework, the workgroup then developed a Toolkit for Centering Racial Equity Throughout Data Integration, a resource that has been broadly disseminated across the U.S.
Findings indicate that centering racial equity within data integration efforts is not a binary outcome, but rather a series of small steps towards more equitable practice. There are countless ways to center racial equity across the data life cycle, and this framework provides concrete strategies for organizations to begin to grow that work in practice.
地方和州政府进行数据整合是为了公共利益,以支持家庭和社区的相互关联需求。尽管数据基础设施是支持以公平为导向的改革的有力工具,但种族公平很少被作为数据整合的核心目标加以关注或优先考虑。这引发了一些根本性的担忧,因为整合后的数据越来越多地为评估、研究和风险建模提供原材料。一般来说,各机构并未充分审视和承认其历史中的结构性偏见,以及数据在政策和项目的制定与管理中反映系统性种族不平等的方式。与此同时,公民数据使用者和公众在数据系统的开发和使用过程中很少被征求意见。
本文介绍了一个框架以及“实际行动中的工作”的实地案例,这些是由一个美国公民数据利益相关者工作小组在2019 - 2020年共同生成的。
采用目的抽样法精心挑选了一个由15人组成的多元化工作小组,该小组运用参与式行动研究和公众审议共同创建了一个最佳实践框架。
该框架旨在支持各机构认识并弥补数据和实践中固有的危害和偏见。它围绕行政数据生命周期的六个阶段进行组织——规划、数据收集、数据访问、算法/统计工具的使用、分析以及报告与传播。对于每个阶段,该框架都包括以种族公平为核心的积极做法和存在问题的做法,并配有来自美国各地的“实际行动中的工作”实地案例。利用这个框架,该工作小组随后开发了《数据整合全过程以种族公平为核心的工具包》,这是一份已在美国广泛传播的资源。
研究结果表明,在数据整合工作中以种族公平为核心并非一个二元化的结果,而是朝着更公平实践迈出的一系列小步骤。在整个数据生命周期中以种族公平为核心有无数种方式,这个框架为各组织在实践中开展此项工作提供了具体策略。