College of Science, Beijing Forestry University, Beijing, China.
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
Front Endocrinol (Lausanne). 2024 Feb 14;15:1291895. doi: 10.3389/fendo.2024.1291895. eCollection 2024.
The ratio of Triglyceride (TG) to high-density lipoprotein cholesterol (HDL-C) is a crucial indicator for diabetes diagnosis.
This study utilizes the Copula function to model and fit the non-linear correlation among fasting blood glucose (Glu), glycosylated hemoglobin (HbA1C), and TG/HDL-C in patients with diabetes. The Copula function chosen for this study includes the two-dimensional Archimedes and Elliptical distribution family, as well as the multidimensional Vine Copula function, for fitting the data. The evaluation of the fitting effect is performed using the mean absolute error (MAE) and mean square error (MSE).
The results indicate that the Clayton Copula exhibits the highest effectiveness in fitting the pairwise relationship between Glu and TG/HDL-C, as well as HbA1C and TG/HDL-C, displaying the smallest fitting error. Additionally, the Vine Copula function produces a satisfactory fit for the relationship among all three indicators. Compared to linear analysis methods, the Copula function more accurately depicts the correlation among these three types of indicators.
Moreover, our findings indicate a stronger correlation in the lower tail between Glu and HbA1C, as well as TG/HDL-C, suggesting that the Copula function provides greater accuracy and applicability in depicting the relationship among these indicators. As a result, it can offer a more precise auxiliary diagnosis and serve as a valuable reference in clinical judgment.
甘油三酯(TG)与高密度脂蛋白胆固醇(HDL-C)的比值是诊断糖尿病的一个关键指标。
本研究采用 Copula 函数对糖尿病患者空腹血糖(Glu)、糖化血红蛋白(HbA1C)与 TG/HDL-C 之间的非线性相关进行建模和拟合。本研究选择的 Copula 函数包括二维 Archimedes 和 Elliptical 分布族,以及多维 Vine Copula 函数,用于拟合数据。通过平均绝对误差(MAE)和均方误差(MSE)来评估拟合效果。
结果表明,Clayton Copula 在拟合 Glu 与 TG/HDL-C 以及 HbA1C 与 TG/HDL-C 之间的二元关系方面表现出最高的有效性,拟合误差最小。此外,Vine Copula 函数对所有三个指标之间的关系产生了令人满意的拟合。与线性分析方法相比,Copula 函数更准确地描述了这三种类型的指标之间的相关性。
此外,我们的研究结果表明,Glu 和 HbA1C 以及 TG/HDL-C 之间在低尾部分具有更强的相关性,这表明 Copula 函数在描述这些指标之间的关系方面提供了更高的准确性和适用性。因此,它可以提供更精确的辅助诊断,并为临床判断提供有价值的参考。