Suppr超能文献

利用AMMI模型和GGE双标图对印度尼西亚橙色肉甘薯的产量稳定性进行分析

Yield stability analysis of orange - Fleshed sweet potato in Indonesia using AMMI and GGE biplot.

作者信息

Karuniawan Agung, Maulana Haris, Ustari Debby, Dewayani Sitaresmi, Solihin Eso, Solihin M Amir, Amien Suseno, Arifin Mahfud

机构信息

Faculty of Agriculture, Universitas Padjadjaran, Bandung, Indonesia.

Bioresources Management, Graduate School, Universitas Padjadjaran, Bandung, Indonesia.

出版信息

Heliyon. 2021 Apr 30;7(4):e06881. doi: 10.1016/j.heliyon.2021.e06881. eCollection 2021 Apr.

Abstract

Orange-Fleshed Sweet Potato (OFSP) is an important crop in Indonesia. Yield potential and genotypic adaptability are important factors in varietal development. The purpose of this study was to estimate the stability of yield and to select the best OFSP genotypes across three agroecosystems in West Java, Indonesia. The field trials used were augmented design with 50 F1 Orange-Fleshed Sweet Potato (OFSP) genotypes as treatment, and seven check varieties as controls. The experiments were conducted in three different agroecosystems in West Java (Sumedang, Bandung, and Karawang). Selection was based on physical characteristics of sweet potato tuber, yield and stability across three environments. Data analysis of the yield characters, yield component, and tuber quality were performed by combined variance analysis. Selected genotypes were analyzed for stability yield using the parametric, non-parametric, Additive Main effects and Multiplicative Interaction (AMMI), AMMI Stability Value (ASV), and Genotype and Genotype by Environment (GGE) biplot models. Results identified the top best ten F1 genotypes namely F1-38 (G1), F1-69 (G2), F1-71 (G3), F1-77 (G4), F1-127 (G5), F1-128 (G6), F1-135 (G7), F1-159 (G8), F1-191 (G9), and F1-226 (G10). Location showed a significant effect on yield. Genotypes F1-069, F1-077, F1-226, F1-038, and F1-128 have the lowest ASR based on non-parametric and parametric stability models and there were identified as the most stable. AMMI analysis identified F1-128, F1-135, F1-038, and F1-069 as the most stable genotypes. F1-38 (G1), F1-69 (G2), F1-128 (G6) were found to be the most stable genotypes based on ASV analysis, while GGE biplot identified F1-38 (G1) and F1-69 (G2) genotypes as the stable genotypes. Other genotypes were considered to as location-specific. Based on AMMI, ASV, and GGE Biplot models, F1-038, and F1-069 were identified as stable genotypes. They produced higher yields than other genotypes. Therefore, the F1-038 and F1-069 genotypes can be potentially recommended as superior varieties for West Java, Indonesia.

摘要

橙色果肉甘薯(OFSP)是印度尼西亚的一种重要作物。产量潜力和基因型适应性是品种培育中的重要因素。本研究的目的是评估产量稳定性,并在印度尼西亚西爪哇的三个农业生态系统中选择最佳的橙色果肉甘薯基因型。所采用的田间试验为增广设计,以50个F1橙色果肉甘薯(OFSP)基因型作为处理,7个对照品种作为对照。试验在西爪哇的三个不同农业生态系统(苏门答腊、万隆和卡拉旺)进行。选择基于甘薯块茎的物理特性、产量以及在三种环境下的稳定性。通过联合方差分析对产量性状、产量构成因素和块茎品质进行数据分析。使用参数模型、非参数模型、加性主效应和乘性互作(AMMI)、AMMI稳定性值(ASV)以及基因型与基因型×环境(GGE)双标图模型对所选基因型的产量稳定性进行分析。结果确定了排名前十的最佳F1基因型,即F1 - 38(G1)、F1 - 69(G2)、F1 - 71(G3)、F1 - 77(G4)、F1 - 127(G5)、F1 - 128(G6)、F1 - 135(G7)、F1 - 159(G8)、F1 - 191(G9)和F1 - 226(G10)。地点对产量有显著影响。基于非参数和参数稳定性模型,基因型F1 - 069、F1 - 077、F1 - 226、F1 - 038和F1 - 128的ASR最低,被确定为最稳定的基因型。AMMI分析确定F1 - 128、F1 - 135、F1 - 038和F1 - 069为最稳定的基因型。基于ASV分析,发现F1 - 38(G1)、F1 - 69(G2)、F1 - 128(G6)是最稳定的基因型,而GGE双标图确定F1 - 38(G1)和F1 - 69(G2)基因型为稳定基因型。其他基因型被认为是特定于地点的。基于AMMI、ASV和GGE双标图模型,F1 - 038和F1 - 069被确定为稳定基因型。它们的产量高于其他基因型。因此,F1 - 038和F1 - 069基因型有可能被推荐为印度尼西亚西爪哇的优良品种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f5d/8111592/59a58196fad6/gr1.jpg

相似文献

1
Yield stability analysis of orange - Fleshed sweet potato in Indonesia using AMMI and GGE biplot.
Heliyon. 2021 Apr 30;7(4):e06881. doi: 10.1016/j.heliyon.2021.e06881. eCollection 2021 Apr.
2
Yield stability dataset of new orange fleshed sweet potato ()) genotypes in West Java, Indonesia.
Data Brief. 2020 Sep 9;32:106297. doi: 10.1016/j.dib.2020.106297. eCollection 2020 Oct.
4
Genotype by environment interaction effect on some selected traits of orange-fleshed sweet potato ( [L].Lam).
Heliyon. 2022 Dec 17;8(12):e12395. doi: 10.1016/j.heliyon.2022.e12395. eCollection 2022 Dec.
5
Genotype-by-environment interaction and stability analysis of grain yield of bread wheat ( L.) genotypes using AMMI and GGE biplot analyses.
Heliyon. 2024 Jun 14;10(12):e32918. doi: 10.1016/j.heliyon.2024.e32918. eCollection 2024 Jun 30.
6
Genotype x environment interaction and yield stability of soybean (Glycine max l.) genotypes in multi-environment trials (METs) in Nigeria.
Heliyon. 2024 Sep 18;10(19):e38097. doi: 10.1016/j.heliyon.2024.e38097. eCollection 2024 Oct 15.
7
AMMI and GGE biplot analyses of Bambara groundnut [ (L.) Verdc.] for agronomic performances under three environmental conditions.
Front Plant Sci. 2023 Jan 20;13:997429. doi: 10.3389/fpls.2022.997429. eCollection 2022.
9
Genotype-by-environment interactions (GEIs) and evaluate superior sweet potato ( [L.] Lam) using combined analysis and GGE biplot.
Heliyon. 2023 Sep 15;9(9):e20203. doi: 10.1016/j.heliyon.2023.e20203. eCollection 2023 Sep.
10
Adaptability and stability for soybean yield by AMMI and GGE models in Ethiopia.
Front Plant Sci. 2022 Nov 23;13:950992. doi: 10.3389/fpls.2022.950992. eCollection 2022.

引用本文的文献

1
Stability and adaptability of grain yield in quinoa genotypes in four locations of Iran.
Front Plant Sci. 2024 Nov 29;15:1487106. doi: 10.3389/fpls.2024.1487106. eCollection 2024.
2
Sweet potato ( L.) genotype selection using advanced indices and statistical models: A multi-year approach.
Heliyon. 2024 May 20;10(10):e31569. doi: 10.1016/j.heliyon.2024.e31569. eCollection 2024 May 30.
3
Agronomic performance and yield stability of extra-early maturing maize hybrids in multiple environments in the Sahel.
Heliyon. 2023 Nov 2;9(11):e21659. doi: 10.1016/j.heliyon.2023.e21659. eCollection 2023 Nov.
4
Genotype-by-environment interactions (GEIs) and evaluate superior sweet potato ( [L.] Lam) using combined analysis and GGE biplot.
Heliyon. 2023 Sep 15;9(9):e20203. doi: 10.1016/j.heliyon.2023.e20203. eCollection 2023 Sep.
6
Evaluation of High Yielding Maize Hybrids Based on Combined Stability Analysis, Sustainability Index, and GGE Biplot.
Biomed Res Int. 2022 Jul 25;2022:3963850. doi: 10.1155/2022/3963850. eCollection 2022.

本文引用的文献

2
STABILITYSOFT: A new online program to calculate parametric and non-parametric stability statistics for crop traits.
Appl Plant Sci. 2019 Jan 15;7(1):e01211. doi: 10.1002/aps3.1211. eCollection 2019 Jan.
3
Adaptability and stability analysis of the juice yield of yellow passion fruit varieties.
Genet Mol Res. 2014 Aug 26;13(3):6512-27. doi: 10.4238/2014.August.26.2.
4
Some statistical aspects of partitioning genotype-environmental components of variability.
Heredity (Edinb). 1972 Oct;29(2):237-45. doi: 10.1038/hdy.1972.87.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验