Wang Haitao, Li Ming
School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
J Phys Chem Lett. 2021 May 27;12(20):4928-4935. doi: 10.1021/acs.jpclett.1c01081. Epub 2021 May 19.
We present a numerical investigation of the plasmonic and photothermal properties of two different types of cuprous selenide (CuSe) concentric multilayer nanoshells (CMNSs), heteroCMNSs and homoCMNSs, comprising an outer CuSe nanoshell and an intermediate silica layer but with a different nanoparticle core of either Au or CuSe. Numerical calculations of optical absorption, near-field enhancement, and local temperature increase are performed with varied dimensions. The plasmon modes from both types of CMNSs are interpreted by combining the plasmon hybridization theory with the surface charge distribution. The two CMNSs exhibit remarkable near-infrared II (NIR-II) plasmonic properties tunable by controlling the interaction between the inner core and the CuSe nanoshell. The distinct temperature increase distributions between the two CMNSs are identified at their NIR-II resonance wavelengths. The correlation between the partial absorption and the temperature increase of the inner core and CuSe nanoshell suggests the thermal interplay between the components.
我们对两种不同类型的硒化亚铜(CuSe)同心多层纳米壳(CMNSs)——异质CMNSs和同质CMNSs的等离子体和光热特性进行了数值研究,它们均由一个外部CuSe纳米壳和一个中间二氧化硅层组成,但具有不同的纳米颗粒核心,分别为Au或CuSe。通过改变尺寸对光吸收、近场增强和局部温度升高进行了数值计算。结合等离子体杂交理论和表面电荷分布对两种类型CMNSs的等离子体模式进行了解释。通过控制内核与CuSe纳米壳之间的相互作用,这两种CMNSs表现出显著的近红外II(NIR-II)等离子体特性,且该特性可调。在它们的NIR-II共振波长处,确定了两种CMNSs之间不同的温度升高分布。内核和CuSe纳米壳的部分吸收与温度升高之间的相关性表明了各组分之间的热相互作用。