Suppr超能文献

深度EBV:一种用于预测爱泼斯坦-巴尔病毒(EBV)整合位点的深度学习模型。

DeepEBV: a deep learning model to predict Epstein-Barr virus (EBV) integration sites.

作者信息

Liang Jiuxing, Cui Zifeng, Wu Canbiao, Yu Yao, Tian Rui, Xie Hongxian, Jin Zhuang, Fan Weiwen, Xie Weiling, Huang Zhaoyue, Xu Wei, Zhu Jingjing, You Zeshan, Guo Xiaofang, Qiu Xiaofan, Ye Jiahao, Lang Bin, Li Mengyuan, Tan Songwei, Hu Zheng

机构信息

Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.

Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China.

出版信息

Bioinformatics. 2021 Oct 25;37(20):3405-3411. doi: 10.1093/bioinformatics/btab388.

Abstract

MOTIVATION

Epstein-Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment, which enables the prediction of EBV integration sites.

RESULTS

An attention-based deep learning model, DeepEBV, was developed to predict EBV integration sites by learning local genomic features automatically. First, DeepEBV was trained and tested using the data from the dsVIS database. The results showed that DeepEBV with EBV integration sequences plus Repeat peaks and 2-fold data augmentation performed the best on the training dataset. Furthermore, the performance of the model was validated in an independent dataset. In addition, the motifs of DNA-binding proteins could influence the selection preference of viral insertional mutagenesis. Furthermore, the results showed that DeepEBV can predict EBV integration hotspot genes accurately. In summary, DeepEBV is a robust, accurate and explainable deep learning model, providing novel insights into EBV integration preferences and mechanisms.

AVAILABILITYAND IMPLEMENTATION

DeepEBV is available as open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepEBV.git.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

爱泼斯坦-巴尔病毒(EBV)是最普遍的DNA致癌病毒之一。据报道,EBV整合到宿主基因组中在癌症发展中起重要作用。EBV整合的偏好显示出对局部基因组环境的强烈依赖性,这使得能够预测EBV整合位点。

结果

开发了一种基于注意力的深度学习模型DeepEBV,通过自动学习局部基因组特征来预测EBV整合位点。首先,使用来自dsVIS数据库的数据对DeepEBV进行训练和测试。结果表明,带有EBV整合序列加上重复峰和2倍数据增强的DeepEBV在训练数据集上表现最佳。此外,该模型的性能在一个独立数据集中得到了验证。另外,DNA结合蛋白的基序可以影响病毒插入诱变的选择偏好。此外,结果表明DeepEBV可以准确预测EBV整合热点基因。总之,DeepEBV是一个强大、准确且可解释的深度学习模型,为EBV整合偏好和机制提供了新的见解。

可用性和实现方式

DeepEBV作为开源软件可用,可从https://github.com/JiuxingLiang/DeepEBV.git下载。

补充信息

补充数据可在《生物信息学》在线获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验