Suppr超能文献

通过未确诊疾病网络寻找罕见病的共性。

Finding commonalities in rare diseases through the undiagnosed diseases network.

作者信息

Yates Josephine, Gutiérrez-Sacristán Alba, Jouhet Vianney, LeBlanc Kimberly, Esteves Cecilia, DeSain Thomas N, Benik Nick, Stedman Jason, Palmer Nathan, Mellon Guillaume, Kohane Isaac, Avillach Paul

机构信息

Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

J Am Med Inform Assoc. 2021 Jul 30;28(8):1694-1702. doi: 10.1093/jamia/ocab050.

Abstract

OBJECTIVE

When studying any specific rare disease, heterogeneity and scarcity of affected individuals has historically hindered investigators from discerning on what to focus to understand and diagnose a disease. New nongenomic methodologies must be developed that identify similarities in seemingly dissimilar conditions.

MATERIALS AND METHODS

This observational study analyzes 1042 patients from the Undiagnosed Diseases Network (2015-2019), a multicenter, nationwide research study using phenotypic data annotated by specialized staff using Human Phenotype Ontology terms. We used Louvain community detection to cluster patients linked by Jaccard pairwise similarity and 2 support vector classifier to assign new cases. We further validated the clusters' most representative comorbidities using a national claims database (67 million patients).

RESULTS

Patients were divided into 2 groups: those with symptom onset before 18 years of age (n = 810) and at 18 years of age or older (n = 232) (average symptom onset age: 10 [interquartile range, 0-14] years). For 810 pediatric patients, we identified 4 statistically significant clusters. Two clusters were characterized by growth disorders, and developmental delay enriched for hypotonia presented a higher likelihood of diagnosis. Support vector classifier showed 0.89 balanced accuracy (0.83 for Human Phenotype Ontology terms only) on test data.

DISCUSSIONS

To set the framework for future discovery, we chose as our endpoint the successful grouping of patients by phenotypic similarity and provide a classification tool to assign new patients to those clusters.

CONCLUSION

This study shows that despite the scarcity and heterogeneity of patients, we can still find commonalities that can potentially be harnessed to uncover new insights and targets for therapy.

摘要

目的

在研究任何一种特定的罕见疾病时,受影响个体的异质性和稀缺性一直阻碍着研究人员确定应重点关注哪些方面以了解和诊断疾病。必须开发新的非基因组方法,以识别看似不同的病症之间的相似性。

材料与方法

这项观察性研究分析了未确诊疾病网络(2015 - 2019年)中的1042名患者,该研究是一项多中心、全国性的研究,使用由专业人员使用人类表型本体术语注释的表型数据。我们使用Louvain社区检测方法,根据杰卡德成对相似性对患者进行聚类,并使用2个支持向量分类器对新病例进行分类。我们进一步使用国家索赔数据库(6700万患者)验证了聚类中最具代表性的合并症。

结果

患者被分为两组:症状发作年龄在18岁之前的患者(n = 810)和18岁及以上的患者(n = 232)(平均症状发作年龄:10岁[四分位间距,0 - 14岁])。对于810名儿科患者,我们确定了4个具有统计学意义的聚类。两个聚类的特征是生长障碍,而以肌张力减退为主的发育迟缓被诊断的可能性更高。支持向量分类器在测试数据上显示出0.89的平衡准确率(仅使用人类表型本体术语时为0.83)。

讨论

为了为未来的发现奠定框架,我们选择通过表型相似性成功对患者进行分组作为我们的终点,并提供一种分类工具,将新患者分配到这些聚类中。

结论

这项研究表明,尽管患者稀缺且具有异质性,但我们仍然可以找到共性,这些共性可能有助于揭示新的见解和治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/843e/8324228/954aac0b22c3/ocab050f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验