Yates Josephine, Gutiérrez-Sacristán Alba, Jouhet Vianney, LeBlanc Kimberly, Esteves Cecilia, DeSain Thomas N, Benik Nick, Stedman Jason, Palmer Nathan, Mellon Guillaume, Kohane Isaac, Avillach Paul
Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA.
J Am Med Inform Assoc. 2021 Jul 30;28(8):1694-1702. doi: 10.1093/jamia/ocab050.
When studying any specific rare disease, heterogeneity and scarcity of affected individuals has historically hindered investigators from discerning on what to focus to understand and diagnose a disease. New nongenomic methodologies must be developed that identify similarities in seemingly dissimilar conditions.
This observational study analyzes 1042 patients from the Undiagnosed Diseases Network (2015-2019), a multicenter, nationwide research study using phenotypic data annotated by specialized staff using Human Phenotype Ontology terms. We used Louvain community detection to cluster patients linked by Jaccard pairwise similarity and 2 support vector classifier to assign new cases. We further validated the clusters' most representative comorbidities using a national claims database (67 million patients).
Patients were divided into 2 groups: those with symptom onset before 18 years of age (n = 810) and at 18 years of age or older (n = 232) (average symptom onset age: 10 [interquartile range, 0-14] years). For 810 pediatric patients, we identified 4 statistically significant clusters. Two clusters were characterized by growth disorders, and developmental delay enriched for hypotonia presented a higher likelihood of diagnosis. Support vector classifier showed 0.89 balanced accuracy (0.83 for Human Phenotype Ontology terms only) on test data.
To set the framework for future discovery, we chose as our endpoint the successful grouping of patients by phenotypic similarity and provide a classification tool to assign new patients to those clusters.
This study shows that despite the scarcity and heterogeneity of patients, we can still find commonalities that can potentially be harnessed to uncover new insights and targets for therapy.
在研究任何一种特定的罕见疾病时,受影响个体的异质性和稀缺性一直阻碍着研究人员确定应重点关注哪些方面以了解和诊断疾病。必须开发新的非基因组方法,以识别看似不同的病症之间的相似性。
这项观察性研究分析了未确诊疾病网络(2015 - 2019年)中的1042名患者,该研究是一项多中心、全国性的研究,使用由专业人员使用人类表型本体术语注释的表型数据。我们使用Louvain社区检测方法,根据杰卡德成对相似性对患者进行聚类,并使用2个支持向量分类器对新病例进行分类。我们进一步使用国家索赔数据库(6700万患者)验证了聚类中最具代表性的合并症。
患者被分为两组:症状发作年龄在18岁之前的患者(n = 810)和18岁及以上的患者(n = 232)(平均症状发作年龄:10岁[四分位间距,0 - 14岁])。对于810名儿科患者,我们确定了4个具有统计学意义的聚类。两个聚类的特征是生长障碍,而以肌张力减退为主的发育迟缓被诊断的可能性更高。支持向量分类器在测试数据上显示出0.89的平衡准确率(仅使用人类表型本体术语时为0.83)。
为了为未来的发现奠定框架,我们选择通过表型相似性成功对患者进行分组作为我们的终点,并提供一种分类工具,将新患者分配到这些聚类中。
这项研究表明,尽管患者稀缺且具有异质性,但我们仍然可以找到共性,这些共性可能有助于揭示新的见解和治疗靶点。