Suppr超能文献

重新思考机器学习时代的 PICO:ML-PICO。

Rethinking PICO in the Machine Learning Era: ML-PICO.

机构信息

Division of Hospital Medicine, University of California, San Francisco, San Francisco, California, United States.

University of California, San Francisco, San Francisco, California, United States.

出版信息

Appl Clin Inform. 2021 Mar;12(2):407-416. doi: 10.1055/s-0041-1729752. Epub 2021 May 19.

Abstract

BACKGROUND

Machine learning (ML) has captured the attention of many clinicians who may not have formal training in this area but are otherwise increasingly exposed to ML literature that may be relevant to their clinical specialties. ML papers that follow an outcomes-based research format can be assessed using clinical research appraisal frameworks such as PICO (Population, Intervention, Comparison, Outcome). However, the PICO frameworks strain when applied to ML papers that create new ML models, which are akin to diagnostic tests. There is a need for a new framework to help assess such papers.

OBJECTIVE

We propose a new framework to help clinicians systematically read and evaluate medical ML papers whose aim is to create a new ML model: ML-PICO (Machine Learning, Population, Identification, Crosscheck, Outcomes). We describe how the ML-PICO framework can be applied toward appraising literature describing ML models for health care.

CONCLUSION

The relevance of ML to practitioners of clinical medicine is steadily increasing with a growing body of literature. Therefore, it is increasingly important for clinicians to be familiar with how to assess and best utilize these tools. In this paper we have described a practical framework on how to read ML papers that create a new ML model (or diagnostic test): ML-PICO. We hope that this can be used by clinicians to better evaluate the quality and utility of ML papers.

摘要

背景

机器学习(ML)引起了许多临床医生的关注,他们可能没有接受过该领域的正式培训,但越来越多地接触到可能与其临床专业相关的 ML 文献。遵循基于结果的研究格式的 ML 论文可以使用临床研究评估框架(如 PICO(人群、干预、比较、结果))进行评估。然而,当应用于创建新的 ML 模型的 ML 论文时,PICO 框架会出现问题,这些模型类似于诊断测试。因此,需要一个新的框架来帮助评估此类论文。

目的

我们提出了一个新的框架,以帮助临床医生系统地阅读和评估旨在创建新的 ML 模型的医学 ML 论文:ML-PICO(机器学习、人群、识别、交叉检查、结果)。我们描述了如何应用 ML-PICO 框架来评估描述医疗保健中 ML 模型的文献。

结论

随着越来越多的文献的出现,ML 对临床医学从业者的相关性稳步增加。因此,临床医生越来越有必要熟悉如何评估和最好地利用这些工具。在本文中,我们描述了一个如何阅读创建新 ML 模型(或诊断测试)的 ML 论文的实用框架:ML-PICO。我们希望这可以帮助临床医生更好地评估 ML 论文的质量和实用性。

相似文献

1
Rethinking PICO in the Machine Learning Era: ML-PICO.
Appl Clin Inform. 2021 Mar;12(2):407-416. doi: 10.1055/s-0041-1729752. Epub 2021 May 19.
2
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
3
Combination of conditional random field with a rule based method in the extraction of PICO elements.
BMC Med Inform Decis Mak. 2018 Dec 4;18(1):128. doi: 10.1186/s12911-018-0699-2.
6
Improving reference prioritisation with PICO recognition.
BMC Med Inform Decis Mak. 2019 Dec 5;19(1):256. doi: 10.1186/s12911-019-0992-8.
7
Evidence-Based Guidelines for Fatigue Risk Management in EMS: Formulating Research Questions and Selecting Outcomes.
Prehosp Emerg Care. 2017 Mar-Apr;21(2):149-156. doi: 10.1080/10903127.2016.1241329. Epub 2016 Nov 18.
9
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.
JBI Database System Rev Implement Rep. 2016 Apr;14(4):96-137. doi: 10.11124/JBISRIR-2016-1843.

引用本文的文献

1
Evaluation of changes in prediction modelling in biomedicine using systematic reviews.
BMC Med Res Methodol. 2025 Jul 1;25(1):167. doi: 10.1186/s12874-025-02605-2.
4
Diversity in Machine Learning: A Systematic Review of Text-Based Diagnostic Applications.
Appl Clin Inform. 2022 May;13(3):569-582. doi: 10.1055/s-0042-1749119. Epub 2022 May 25.
5
Predictive models for clinical decision making: Deep dives in practical machine learning.
J Intern Med. 2022 Aug;292(2):278-295. doi: 10.1111/joim.13483. Epub 2022 Apr 25.

本文引用的文献

1
Developing a delivery science for artificial intelligence in healthcare.
NPJ Digit Med. 2020 Aug 21;3:107. doi: 10.1038/s41746-020-00318-y. eCollection 2020.
2
Developing a curriculum in artificial intelligence for emergency radiology.
Emerg Radiol. 2020 Aug;27(4):359-360. doi: 10.1007/s10140-020-01795-0.
3
A Review of Challenges and Opportunities in Machine Learning for Health.
AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:191-200. eCollection 2020.
6
Predicting Inpatient Medication Orders From Electronic Health Record Data.
Clin Pharmacol Ther. 2020 Jul;108(1):145-154. doi: 10.1002/cpt.1826. Epub 2020 Apr 11.
7
State-of-the-Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System.
J Am Heart Assoc. 2020 Feb 18;9(4):e013924. doi: 10.1161/JAHA.119.013924. Epub 2020 Feb 13.
8
Opportunities and challenges in using real-world data for health care.
J Clin Invest. 2020 Feb 3;130(2):565-574. doi: 10.1172/JCI129197.
9
Artificial Intelligence in Radiology Residency Training.
Semin Musculoskelet Radiol. 2020 Feb;24(1):74-80. doi: 10.1055/s-0039-3400270. Epub 2020 Jan 28.
10
Machine Learning and the Cancer-Diagnosis Problem - No Gold Standard.
N Engl J Med. 2019 Dec 12;381(24):2285-2287. doi: 10.1056/NEJMp1907407.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验