Division of Hospital Medicine, University of California, San Francisco, San Francisco, California, United States.
University of California, San Francisco, San Francisco, California, United States.
Appl Clin Inform. 2021 Mar;12(2):407-416. doi: 10.1055/s-0041-1729752. Epub 2021 May 19.
Machine learning (ML) has captured the attention of many clinicians who may not have formal training in this area but are otherwise increasingly exposed to ML literature that may be relevant to their clinical specialties. ML papers that follow an outcomes-based research format can be assessed using clinical research appraisal frameworks such as PICO (Population, Intervention, Comparison, Outcome). However, the PICO frameworks strain when applied to ML papers that create new ML models, which are akin to diagnostic tests. There is a need for a new framework to help assess such papers.
We propose a new framework to help clinicians systematically read and evaluate medical ML papers whose aim is to create a new ML model: ML-PICO (Machine Learning, Population, Identification, Crosscheck, Outcomes). We describe how the ML-PICO framework can be applied toward appraising literature describing ML models for health care.
The relevance of ML to practitioners of clinical medicine is steadily increasing with a growing body of literature. Therefore, it is increasingly important for clinicians to be familiar with how to assess and best utilize these tools. In this paper we have described a practical framework on how to read ML papers that create a new ML model (or diagnostic test): ML-PICO. We hope that this can be used by clinicians to better evaluate the quality and utility of ML papers.
机器学习(ML)引起了许多临床医生的关注,他们可能没有接受过该领域的正式培训,但越来越多地接触到可能与其临床专业相关的 ML 文献。遵循基于结果的研究格式的 ML 论文可以使用临床研究评估框架(如 PICO(人群、干预、比较、结果))进行评估。然而,当应用于创建新的 ML 模型的 ML 论文时,PICO 框架会出现问题,这些模型类似于诊断测试。因此,需要一个新的框架来帮助评估此类论文。
我们提出了一个新的框架,以帮助临床医生系统地阅读和评估旨在创建新的 ML 模型的医学 ML 论文:ML-PICO(机器学习、人群、识别、交叉检查、结果)。我们描述了如何应用 ML-PICO 框架来评估描述医疗保健中 ML 模型的文献。
随着越来越多的文献的出现,ML 对临床医学从业者的相关性稳步增加。因此,临床医生越来越有必要熟悉如何评估和最好地利用这些工具。在本文中,我们描述了一个如何阅读创建新 ML 模型(或诊断测试)的 ML 论文的实用框架:ML-PICO。我们希望这可以帮助临床医生更好地评估 ML 论文的质量和实用性。