Suppr超能文献

高能密度物理学的数据驱动未来。

The data-driven future of high-energy-density physics.

机构信息

Clarendon Laboratory, University of Oxford, Parks Road, Oxford, UK.

Lawrence Livermore National Laboratory, Livermore, CA, USA.

出版信息

Nature. 2021 May;593(7859):351-361. doi: 10.1038/s41586-021-03382-w. Epub 2021 May 19.

Abstract

High-energy-density physics is the field of physics concerned with studying matter at extremely high temperatures and densities. Such conditions produce highly nonlinear plasmas, in which several phenomena that can normally be treated independently of one another become strongly coupled. The study of these plasmas is important for our understanding of astrophysics, nuclear fusion and fundamental physics-however, the nonlinearities and strong couplings present in these extreme physical systems makes them very difficult to understand theoretically or to optimize experimentally. Here we argue that machine learning models and data-driven methods are in the process of reshaping our exploration of these extreme systems that have hitherto proved far too nonlinear for human researchers. From a fundamental perspective, our understanding can be improved by the way in which machine learning models can rapidly discover complex interactions in large datasets. From a practical point of view, the newest generation of extreme physics facilities can perform experiments multiple times a second (as opposed to approximately daily), thus moving away from human-based control towards automatic control based on real-time interpretation of diagnostic data and updates of the physics model. To make the most of these emerging opportunities, we suggest proposals for the community in terms of research design, training, best practice and support for synthetic diagnostics and data analysis.

摘要

高能密度物理学是物理学的一个分支,研究物质在极高温度和密度下的行为。这种条件下会产生高度非线性的等离子体,其中许多原本可以独立处理的现象会变得强烈耦合。研究这些等离子体对于我们理解天体物理学、核聚变和基础物理学都很重要——然而,这些极端物理系统中的非线性和强耦合使得它们在理论上很难理解,在实验上也很难优化。在这里,我们认为机器学习模型和数据驱动方法正在重塑我们对这些极端系统的探索,这些系统迄今为止对人类研究人员来说都过于非线性了。从根本上讲,机器学习模型可以快速发现大数据集中的复杂相互作用,从而提高我们的理解。从实际的角度来看,新一代的极端物理设施可以每秒执行多次实验(而不是大约每天一次),从而从基于人的控制转向基于实时解释诊断数据和物理模型更新的自动控制。为了充分利用这些新出现的机会,我们就研究设计、培训、最佳实践以及对综合诊断和数据分析的支持向社区提出建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验