Suppr超能文献

通过计算机网络药理学方法从北非植物中鉴定用于治疗阿尔茨海默病的植物化学物质及其分子靶点。

Identification of phytochemicals from North African plants for treating Alzheimer's diseases and of their molecular targets by in silico network pharmacology approach.

作者信息

Raafat Karim

机构信息

Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University (BAU), 115020, Beirut, Lebanon.

出版信息

J Tradit Complement Med. 2020 Aug 12;11(3):268-278. doi: 10.1016/j.jtcme.2020.08.002. eCollection 2021 May.

Abstract

BACKGROUND

The global social expenses of Alzheimer's disease (AD) have been increased to US$1 trillion due to high cost, side-effects, and low efficiency of the current AD-therapies. Another reason is the lack of preventive drugs and the low-income situation of Asian and African countries. Accordingly, patients rather prefer traditional herbal remedies. Network-pharmacology has been a well-established method for the visualization and the construction of disorder target protein-drug framework. This could aid in the identification of drugs molecular-mechanisms.

AIM

The aim of this study is to investigate the phytochemical constituents that could target Alzheimer's disease from the North African plants. This could be done by exploring their possible mechanisms of action through molecular network pharmacology-based approach.

EXPERIMENTAL PROCEDURE

The Phytochemical-compounds of North-African plants (NAP) have been accessed from open-databank. ADME-screening has been conducted for filtering of the NAP phytochemical-constituents utilizing Qikprop-software. The open STITCH databank has been utilized for the prediction of the phytochemical-constituents target-proteins; UniProt and TDD-DB databanks have been utilized for distinguishing AD-related proteins. Phytochemical constituent-target protein (C-T) and plant-phytochemical constituent-target protein (P-C-T) frameworks have been assembled utilizing Cytoscape to interpret the anti-Alzheimer's disease mechanism of action of the targeted phytochemical constituents.

RESULTS

The NAP 6842 phytochemical-constituents (from more than 1000 plants) have been exposed to ADME and CNS modulating filtration, generating 94 phytochemical-constituents which have been subjected to target-prediction investigation. The 94 phytochemical-constituents and the 4 AD-identified targets have been associated through 155 edges which formed the main pathways related to AD. Cuparene, alpha-selinene, beta-sesquiphellandrene, calamenene, 2-4-dimethylheptane, undecane, -tetradecane, hexadecane, nonadecane, -eicosane, and heneicosane have had C-T network highest combined-score, whilst the proteins MAO-B, HMG-CoA, BACE1, and GCR have been the most enriched ones by comprising the uppermost combined-scores of C-T. acquired the uppermost number of P-C-Target interactions.

CONCLUSION

The phytochemical-targets prediction of NAP utilizing molecular-network pharmacology-based investigation has paved the way for networking multi-target, multi-constituent, and multi-pathway mechanisms. This may introduce potential future targets for the regulation and the management of Alzheimer's disease.

TAXONOMY CLASSIFICATION BY EVISE

Alzheimer's disease, Network pharmacology, In-silico computer based approach.

摘要

背景

由于目前治疗阿尔茨海默病(AD)的疗法成本高、有副作用且效率低,全球AD的社会支出已增至1万亿美元。另一个原因是缺乏预防性药物以及亚洲和非洲国家的低收入状况。因此,患者更倾向于传统草药疗法。网络药理学是一种用于可视化和构建疾病靶点蛋白 - 药物框架的成熟方法。这有助于识别药物的分子机制。

目的

本研究的目的是从北非植物中研究可能靶向阿尔茨海默病的植物化学成分。这可以通过基于分子网络药理学的方法探索其可能的作用机制来实现。

实验步骤

从开放数据库获取北非植物(NAP)的植物化学成分。利用Qikprop软件对NAP植物化学成分进行ADME筛选以过滤这些成分。利用开放的STITCH数据库预测植物化学成分的靶蛋白;利用UniProt和TDD - DB数据库区分与AD相关的蛋白质。利用Cytoscape组装植物化学成分 - 靶蛋白(C - T)和植物 - 植物化学成分 - 靶蛋白(P - C - T)框架,以解释靶向植物化学成分的抗阿尔茨海默病作用机制。

结果

对来自1000多种植物的6842种NAP植物化学成分进行了ADME和中枢神经系统调节过滤,产生了94种植物化学成分并对其进行靶标预测研究。这94种植物化学成分和4个已确定的AD靶点通过155条边相连,形成了与AD相关的主要途径。库帕烯、α - 瑟林烯、β - 倍半水芹烯、卡拉烯、2 - 4 - 二甲基庚烷、十一烷、十四烷、十六烷、十九烷、二十烷和二十一烷在C - T网络中具有最高的综合得分,而蛋白质单胺氧化酶B(MAO - B)、3 - 羟基 - 3 - 甲基戊二酰辅酶A(HMG - CoA)、β - 分泌酶1(BACE1)和糖皮质激素受体(GCR)通过包含C - T的最高综合得分而成为最富集的蛋白质。获得了最多的P - C - 靶点相互作用。

结论

利用基于分子网络药理学的研究对NAP进行植物化学成分 - 靶点预测,为多靶点、多成分和多途径机制的网络化铺平了道路。这可能为阿尔茨海默病的调控和管理引入潜在的未来靶点。

Evise分类法:阿尔茨海默病、网络药理学、基于计算机模拟的方法

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf4b/8116716/4618dfdb41d5/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验