Suppr超能文献

评估来自H2的脱卤酶的盐度稳定性及其对污染物的降解能力。

assessment of dehalogenase from H2 in relation to its salinity-stability and pollutants degradation.

作者信息

Oyewusi Habeebat Adekilekun, Huyop Fahrul, Wahab Roswanira Abdul, Hamid Azzmer Azzar Abdul

机构信息

Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.

Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.

出版信息

J Biomol Struct Dyn. 2022;40(19):9332-9346. doi: 10.1080/07391102.2021.1927846. Epub 2021 May 20.

Abstract

Increased scientific interest has led to the rise in biotechnological uses of halophilic and halotolerant microbes for hypersaline wastewater bioremediation. Hence, this study performed molecular docking, molecular dynamic (MD) simulations, and validation by Molecular Mechanic Poisson-Boltzmann Surface Area (MM-PBSA) calculations on the DehH2 from H2. We aimed to identify the interactions of DehH2 with substrates haloacids, haloacetates, and chlorpyrifos under extreme salinity (35% NaCl). MD simulations revealed that DehH2 preferentially degraded haloacids and haloacetates (-6.3 to -4.7 kcal/mol) by forming three or four hydrogen bonds to the catalytic triad, Asp125, Arg201, and Lys202. Conversely, chlorpyrifos was the least preferred substrate in both MD simulations and MM-PBSA calculations. MD simulation results ranked the DehH2-L-2CP complex (RMSD □0.125-0.23 nm) as the most stable while the least was the DehH2-chlorpyrifos complex (RMSD 0.32 nm; RMSF 0.0 - 0.29). The order of stability was as follows: DehH2-L-2CP > DehH2-MCA > DehH2-D-2CP > DehH2-3CP > DehH2-2,2-DCP > DehH2-2,3-DCP > DehH2-TCA > DehH2-chlorpyrifos. The MM-PBSA calculations further affirmed the DehH2-L-2CP complex's highest stability with the lowest binding energy of -45.14 kcal/mol, followed closely by DehH2-MCA (-41.21 kcal/mol), DehH2-D-2CP (-31.59 kcal/mol), DehH2-3CP (-30.75 kcal/mol), DehH2-2,2- DCP (-29.72 kcal/mol), DehH2-2,3-DCP (-22.20 kcal/mol) and DehH2-TCA (-18.46 kcal/mol). The positive binding energy of the DehH2-chlorpyrifos complex (+180.57 kcal/mol) proved the enzyme's non-preference for the substrate. The results ultimately illustrated the unique specificity of the DehH2 to degrade the above-said pollutants under a hypersaline condition.Communicated by Ramaswamy H. Sarma.

摘要

日益增长的科学兴趣促使嗜盐和耐盐微生物在高盐废水生物修复中的生物技术应用不断增加。因此,本研究对来自嗜盐氢杆菌属的DehH2进行了分子对接、分子动力学(MD)模拟,并通过分子力学泊松-玻尔兹曼表面积(MM-PBSA)计算进行验证。我们旨在确定在极端盐度(35%氯化钠)下DehH2与底物卤代酸、卤代乙酸酯和毒死蜱之间的相互作用。MD模拟显示,DehH2通过与催化三联体Asp125、Arg201和Lys202形成三个或四个氢键,优先降解卤代酸和卤代乙酸酯(-6.3至-4.7千卡/摩尔)。相反,在MD模拟和MM-PBSA计算中,毒死蜱都是最不被优先选择的底物。MD模拟结果将DehH2-L-2CP复合物(均方根偏差□0.125 - 0.23纳米)列为最稳定的复合物,而最不稳定的是DehH2-毒死蜱复合物(均方根偏差0.32纳米;均方根波动0.0 - 0.29)。稳定性顺序如下:DehH2-L-2CP > DehH2-MCA > DehH2-D-2CP > DehH2-3CP > DehH2-2,2-DCP > DehH2-2,3-DCP > DehH2-TCA > DehH2-毒死蜱。MM-PBSA计算进一步证实了DehH2-L-2CP复合物具有最高的稳定性,结合能最低,为-45.14千卡/摩尔,紧随其后的是DehH2-MCA(-41.21千卡/摩尔)、DehH2-D-2CP(-31.59千卡/摩尔)、DehH2-3CP(-30.75千卡/摩尔)、DehH2-2,2-DCP(-29.72千卡/摩尔)、DehH2-2,3-DCP(-22.20千卡/摩尔)和DehH2-TCA(-18.46千卡/摩尔)。DehH2-毒死蜱复合物的正结合能(+180.57千卡/摩尔)证明了该酶对该底物不偏好。这些结果最终说明了DehH2在高盐条件下降解上述污染物的独特特异性。由Ramaswamy H. Sarma传达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验