Suppr超能文献

β-葡萄糖苷酶和木聚糖酶的分子对接和分子动力学模拟研究,预测油棕叶片中纤维素成分的降解顺序,用于纳米纤维素的制备。

Molecular docking and molecular dynamics simulations studies on β-glucosidase and xylanase to predict degradation order of cellulosic components in oil palm leaves for nanocellulose preparation.

机构信息

Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia.

Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia.

出版信息

J Biomol Struct Dyn. 2021 Apr;39(7):2628-2641. doi: 10.1080/07391102.2020.1751713. Epub 2020 Apr 20.

Abstract

Literature has shown that oil palm leaves (OPL) can be transformed into nanocellulose (NC) by fungal lignocellulosic enzymes, particularly those produced by the species. However, mechanism of β-glucosidase and xylanase selectivity to degrade lignin, hemicellulose and cellulose in OPL for NC production remains relatively vague. The study aimed to comprehend this aspect by an approach of molecular docking, molecular dynamics (MD) simulation and Molecular-mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis, to compare interactions between the β-glucosidase- and xylanase from UC1 in complex with each substrate. Molecular docking of the enzyme-substrate complex showed residues Glu165-Asp226-Glu423 and Arg155-Glu210-Ser160 being the likely catalytic residues of β-glucosidase and xylanase, respectively. The binding affinity of β-glucosidase for the substrates are as follows: cellulose (-8.1 kcal mol) > lignin (-7.9 kcal mol) > hemicellulose (-7.8 kcal mol), whereas, xylanase showed a corresponding preference for; hemicellulose (-6.7 kcal mol) > cellulose (-5.8 kcal mol) > lignin (-5.7 kcal mol). Selectivity of both enzymes was reiterated by MD simulations where interactions between β-glucosidase-cellulose and xylanase-hemicellulose were the strongest. Notably low free-binding energy (ΔG) of β-glucosidase and xylanase in complex with cellulose (-207.23 +/- 47.13 kJ/mol) and hemicellulose (-131.48 +/- 24.57 kJ/mol) were observed, respectively. The findings thus successfully identified the cellulose component selectivity of the polymer-acting β-glucosidase and xylanase of UC1.Communicated by Ramaswamy H. Sarma.

摘要

文献表明,油棕叶(OPL)可以通过真菌木质纤维素酶转化为纳米纤维素(NC),特别是由 物种产生的酶。然而,β-葡萄糖苷酶和木聚糖酶对 OPL 中木质素、半纤维素和纤维素进行降解以生产 NC 的机制仍然相对模糊。本研究旨在通过分子对接、分子动力学(MD)模拟和分子力学泊松-玻尔兹曼表面面积(MM-PBSA)分析的方法来理解这一方面,以比较β-葡萄糖苷酶和木聚糖酶与每种底物结合时的相互作用。酶-底物复合物的分子对接表明,残基 Glu165-Asp226-Glu423 和 Arg155-Glu210-Ser160 可能分别是β-葡萄糖苷酶和木聚糖酶的催化残基。β-葡萄糖苷酶对底物的结合亲和力如下:纤维素(-8.1 kcal/mol)>木质素(-7.9 kcal/mol)>半纤维素(-7.8 kcal/mol),而木聚糖酶则表现出相应的偏好:半纤维素(-6.7 kcal/mol)>纤维素(-5.8 kcal/mol)>木质素(-5.7 kcal/mol)。MD 模拟也证实了两种酶的选择性,β-葡萄糖苷酶-纤维素和木聚糖酶-半纤维素之间的相互作用最强。值得注意的是,β-葡萄糖苷酶和木聚糖酶与纤维素(-207.23±47.13 kcal/mol)和半纤维素(-131.48±24.57 kcal/mol)复合物的自由结合能(ΔG)较低。因此,这些发现成功地确定了纤维素成分对聚合物作用的β-葡萄糖苷酶和木聚糖酶 UC1 的选择性。由 Ramaswamy H. Sarma 交流。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验