文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

水热合成法利用响应面法(RSM)合成羟基磷灰石粉末。

Hydrothermal synthesis of hydroxyapatite powders using Response Surface Methodology (RSM).

机构信息

Chemical Engineering, Faculty of Engineering Universiti Malaysia Sabah, UMS, Sabah, Malaysia.

Biotechnology, Faculty of Sciences and Natural Resources, Universiti Malaysia Sabah, UMS, Sabah, Malaysia.

出版信息

PLoS One. 2021 May 20;16(5):e0251009. doi: 10.1371/journal.pone.0251009. eCollection 2021.


DOI:10.1371/journal.pone.0251009
PMID:34014966
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8136633/
Abstract

Hydroxyapatite (HAp)-[Ca10 (PO4)6(OH) 2] has a similar chemical composition to bone material, making it the main mineral supplement in bone-making. Due to its high biocompatibility, hydroxyapatite is widely used in the repair of bone deficiencies and in the production of dental or orthopedic implants. In this research, hydroxyapatite nanopowder was synthesized using a hydrothermal technique. Fourier Transform Infrared Spectroscopy (FTIR) and transmission electron microscopy (TEM) were used to investigate the chemical structure and morphology of the synthesized hydroxyapatite powder. X-ray diffraction (XRD) was used to evaluate the phase analysis of HAp nanopowder. In addition, bioactivity HAp assessment was conducted by scanning electron microscopy (SEM) attached with Energy Dispersive X-Ray Spectroscopy (EDX) analysis. Response Surface Methodology (RSM) with central composite design (CCD) was used in order to determine the optimal conditions for yield, size, and crystallinity. Three independent variables (pH, temperature, and hydrothermal treatment time) were investigated. The yield was observed to increase in alkaline conditions; pH showed the greatest influence on the yield, size, and crystallinity of the synthesized hydroxyapatite, based on Analysis of Variance. The results of bioactivity evaluation are showed high bioactivity due to the formation of apatite on the surface of the synthesized nanopowder.

摘要

羟基磷灰石(HAp)-[Ca10(PO4)6(OH)2]的化学成分与骨材料相似,使其成为成骨的主要矿物补充剂。由于其高度的生物相容性,羟基磷灰石被广泛应用于骨缺损的修复和牙科或矫形植入物的生产。在这项研究中,使用水热技术合成了羟基磷灰石纳米粉末。傅里叶变换红外光谱(FTIR)和透射电子显微镜(TEM)用于研究合成的羟基磷灰石粉末的化学结构和形态。X 射线衍射(XRD)用于评估 HAp 纳米粉末的相分析。此外,通过扫描电子显微镜(SEM)和能量色散 X 射线光谱(EDX)分析进行了生物活性 HAp 评估。响应面法(RSM)与中心复合设计(CCD)用于确定产率、尺寸和结晶度的最佳条件。研究了三个独立变量(pH、温度和水热处理时间)。结果表明,在碱性条件下产率增加;基于方差分析,pH 对合成羟基磷灰石的产率、尺寸和结晶度的影响最大。生物活性评估的结果表明,由于合成纳米粉末表面形成了磷灰石,因此具有高生物活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/c19a1bbdb195/pone.0251009.g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/be87a2f98760/pone.0251009.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/e0d925aa782f/pone.0251009.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/88af7fe1bb7e/pone.0251009.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/3cdc7e2bbdec/pone.0251009.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/a364cd37a255/pone.0251009.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/b51ce6038651/pone.0251009.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/35762ecd43a7/pone.0251009.g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/bf29783be940/pone.0251009.g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/5cc2ae2b72b9/pone.0251009.g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/d9971b0ca3ae/pone.0251009.g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/40c0014a7bb6/pone.0251009.g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/545ef608dbc2/pone.0251009.g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/f55a3c2a02b2/pone.0251009.g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/c19a1bbdb195/pone.0251009.g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/be87a2f98760/pone.0251009.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/e0d925aa782f/pone.0251009.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/88af7fe1bb7e/pone.0251009.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/3cdc7e2bbdec/pone.0251009.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/a364cd37a255/pone.0251009.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/b51ce6038651/pone.0251009.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/35762ecd43a7/pone.0251009.g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/bf29783be940/pone.0251009.g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/5cc2ae2b72b9/pone.0251009.g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/d9971b0ca3ae/pone.0251009.g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/40c0014a7bb6/pone.0251009.g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/545ef608dbc2/pone.0251009.g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/f55a3c2a02b2/pone.0251009.g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/8136633/c19a1bbdb195/pone.0251009.g022.jpg

相似文献

[1]
Hydrothermal synthesis of hydroxyapatite powders using Response Surface Methodology (RSM).

PLoS One. 2021

[2]
Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.

ACS Appl Mater Interfaces. 2014-10-8

[3]
Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method.

J Mater Sci Mater Med. 2008-6-10

[4]
Novel banana peel pectin mediated green route for the synthesis of hydroxyapatite nanoparticles and their spectral characterization.

Spectrochim Acta A Mol Biomol Spectrosc. 2014-1-24

[5]
A novel green template assisted synthesis of hydroxyapatite nanorods and their spectral characterization.

Spectrochim Acta A Mol Biomol Spectrosc. 2013-1-30

[6]
Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application.

Dent Mater. 2010-2-13

[7]
Zinc and manganese substituted hydroxyapatite/CMC/PVP electrospun composite for bone repair applications.

Int J Biol Macromol. 2019-11-11

[8]
Hydrothermal synthesis of hydroxyapatite plates prepared using low molecular weight heparin (LMWH).

Colloids Surf B Biointerfaces. 2013-7-5

[9]
Facile synthesis of hydroxyapatite nanoparticles mimicking biological apatite from eggshells for bone-tissue engineering.

Colloids Surf B Biointerfaces. 2018-9-17

[10]
Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time.

Mater Sci Eng C Mater Biol Appl. 2017-1-1

引用本文的文献

[1]
Advances of Hydroxyapatite Nanoparticles in Dental Implant Applications.

Int Dent J. 2025-6

[2]
Synthesis and characterization of hydroxyapatite-zinc oxide nanocomposites incorporating rosemary and thyme essential oils for enhanced bone regeneration and antimicrobial activity.

Rom J Morphol Embryol. 2024

[3]
Crystal structure modification of nano-hydroxyapatite using organic modifiers and hydrothermal technique.

RSC Adv. 2024-9-18

[4]
Correlation between positron annihilation lifetime and photoluminescence measurements for calcined Hydroxyapatite.

Sci Rep. 2024-5-6

[5]
A pedagogical approach for the development and optimization of a novel mix of biowastes-derived hydroxyapatite using the Box-Behnken experimental design.

Heliyon. 2023-12-3

[6]
Hydrothermal extraction and physicochemical characterization of biogenic hydroxyapatite nanoparticles from buffalo waste bones for in vivo xenograft in experimental rats.

Sci Rep. 2023-10-15

[7]
Physicochemical characterization and antioxidant activity of polysaccharides from sp. by microwave-assisted enzymatic extraction.

Front Bioeng Biotechnol. 2023-8-10

[8]
Microwave-Assisted Hydrothermal Treatment of Multifunctional Substituted Hydroxyapatite with Prospective Applications in Bone Regeneration.

J Funct Biomater. 2023-7-19

[9]
Spontaneous Osteogenic Differentiation of Human Mesenchymal Stem Cells by Tuna-Bone-Derived Hydroxyapatite Composites with Green Tea Polyphenol-Reduced Graphene Oxide.

Cells. 2023-5-23

[10]
Preparation, Characterization, and Biological Properties of Hydroxyapatite from Bigeye Snapper () Bone.

Int J Mol Sci. 2023-2-1

本文引用的文献

[1]
Influence of Growth Parameters on the Formation of Hydroxyapatite (HAp) Nanostructures and Their Cell Viability Studies.

Nanobiomedicine (Rij). 2015-1-1

[2]
Synthesis of hydroxyapatite nanorods for application in water defluoridation and optimization of process variables: Advantage of ultrasonication with precipitation method over conventional method.

Ultrason Sonochem. 2017-7

[3]
Three-factor response surface optimization of nano-emulsion formation using a microfluidizer.

J Food Sci Technol. 2015-5

[4]
Effects of hydrothermal treatment on the properties of nanoapatite crystals.

Int J Nanomedicine. 2012-9-28

[5]
Osteoblast adhesion to functionally graded hydroxyapatite coatings doped with silver.

J Biomed Mater Res A. 2011-4-14

[6]
Nanoscale hydroxyapatite particles for bone tissue engineering.

Acta Biomater. 2011-4-1

[7]
Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method.

Ultrason Sonochem. 2009-4

[8]
Biomaterial developments for bone tissue engineering.

Biomaterials. 2000-12

[9]
Preparation-induced stability of bioactive apatite coatings.

Int J Prosthodont. 1991

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索