文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Microwave-Assisted Hydrothermal Treatment of Multifunctional Substituted Hydroxyapatite with Prospective Applications in Bone Regeneration.

作者信息

Burdusel Alexandra-Cristina, Neacsu Ionela Andreea, Birca Alexandra Catalina, Chircov Cristina, Grumezescu Alexandru-Mihai, Holban Alina Maria, Curutiu Carmen, Ditu Lia Mara, Stan Miruna, Andronescu Ecaterina

机构信息

Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania.

Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania.

出版信息

J Funct Biomater. 2023 Jul 19;14(7):378. doi: 10.3390/jfb14070378.


DOI:10.3390/jfb14070378
PMID:37504872
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10381662/
Abstract

Orthopedic bone graft infections are major complications in today's medicine, and the demand for antibacterial treatments is expanding because of the spread of antibiotic resistance. Various compositions of hydroxyapatite (HAp) in which Calcium (Ca) ions are substituted with Cerium (Ce) and Magnesium (Mg) are herein proposed as biomaterials for hard tissue implants. This approach gained popularity in recent years and, in the pursuit of mimicking the natural bone mineral's composition, over 70 elements of the Periodic Table were already reported as substituents into HAp structure. The current study aimed to create materials based on HAp, Hap-Ce, and Hap-Mg using hydrothermal maturation in the microwave field. This route has been considered a novel, promising, and effective way to obtain monodisperse, fine nanoparticles while easily controlling the synthesis parameters. The synthesized HAp powders were characterized morphologically and structurally by XRD diffraction, Dynamic light scattering, zeta potential, FTIR spectrometry, and SEM analysis. Proliferation and morphological analysis on osteoblast cell cultures were used to demonstrate the cytocompatibility of the produced biomaterials. The antimicrobial effect was highlighted in the synthesized samples, especially for hydroxyapatite substituted with cerium. Therefore, the samples of HAp substituted with cerium or magnesium are proposed as biomaterials with enhanced osseointegration, also having the capacity to reduce device-associated infections.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/c657e2a8fa4b/jfb-14-00378-g015a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/703769c4173c/jfb-14-00378-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/8133cae6b1fd/jfb-14-00378-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/7f5d5e6e901e/jfb-14-00378-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/2872276e0a64/jfb-14-00378-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/fe2191c998ae/jfb-14-00378-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/779afb25f0ea/jfb-14-00378-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/3a1ca42cde7e/jfb-14-00378-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/9795881bb89b/jfb-14-00378-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/7baea04c0200/jfb-14-00378-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/974e12b77647/jfb-14-00378-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/58c8369e5e66/jfb-14-00378-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/446b2a9b1205/jfb-14-00378-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/1955608af497/jfb-14-00378-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/61e99e9ca27b/jfb-14-00378-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/c657e2a8fa4b/jfb-14-00378-g015a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/703769c4173c/jfb-14-00378-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/8133cae6b1fd/jfb-14-00378-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/7f5d5e6e901e/jfb-14-00378-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/2872276e0a64/jfb-14-00378-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/fe2191c998ae/jfb-14-00378-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/779afb25f0ea/jfb-14-00378-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/3a1ca42cde7e/jfb-14-00378-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/9795881bb89b/jfb-14-00378-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/7baea04c0200/jfb-14-00378-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/974e12b77647/jfb-14-00378-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/58c8369e5e66/jfb-14-00378-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/446b2a9b1205/jfb-14-00378-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/1955608af497/jfb-14-00378-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/61e99e9ca27b/jfb-14-00378-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c0f/10381662/c657e2a8fa4b/jfb-14-00378-g015a.jpg

相似文献

[1]
Microwave-Assisted Hydrothermal Treatment of Multifunctional Substituted Hydroxyapatite with Prospective Applications in Bone Regeneration.

J Funct Biomater. 2023-7-19

[2]
Doxorubicin loaded cerium substituted hydroxyapatite nanoparticles: A promising new therapeutic approach for bone regeneration, doxorubicin delivery, and cancer treatment.

Int J Pharm. 2024-4-10

[3]
CTAB enabled microwave-hydrothermal assisted mesoporous Zn-doped hydroxyapatite nanorods synthesis using bio-waste Nodipecten nodosus scallop for biomedical implant applications.

Environ Res. 2023-1-1

[4]
Synthesis and Characterization of Photoluminescent Ce(III) and Ce(IV) Substituted Hydroxyapatite Nanomaterials by Co-Precipitation Method: Cytotoxicity and Biocompatibility Evaluation.

Nanomaterials (Basel). 2021-7-25

[5]
Nano Hydroxyapatite for Biomedical Applications Derived from Chemical and Natural Sources by Simple Precipitation Method.

Appl Biochem Biotechnol. 2023-6

[6]
Synthesis and spectral characterization of silver/magnesium co-substituted hydroxyapatite for biomedical applications.

Spectrochim Acta A Mol Biomol Spectrosc. 2014-6-5

[7]
Synthesis and structure of cerium-substituted hydroxyapatite.

J Mater Sci Mater Med. 2005-5

[8]
Hydroxyapatite-Based Natural Biopolymer Composite for Tissue Regeneration.

Materials (Basel). 2024-8-20

[9]
In Vitro Bioactivity and Antibacterial Activity of Strontium-, Magnesium-, and Zinc-Multidoped Hydroxyapatite Porous Coatings Applied via Atmospheric Plasma Spraying.

ACS Appl Bio Mater. 2021-3-15

[10]
The deposition of strontium and zinc Co-substituted hydroxyapatite coatings.

J Mater Sci Mater Med. 2017-3

引用本文的文献

[1]
Antimicrobial and immunomodulatory activity of natural bioactive compounds - an investigation with potential applications in managing Hidradenitis Suppurativa.

Front Immunol. 2025-8-12

[2]
In Situ Synthesis of a Hydroxyapatite and Reduced Graphene Oxide Composite for Potential Electrochemical Biosensing Applications.

ACS Omega. 2025-7-4

[3]
New Three Dimensional-Printed Polyethylene Terephthalate Glycol Liners for Hip Joint Endoprostheses: A Bioactive Platform for Bone Regeneration.

Materials (Basel). 2025-3-8

[4]
Advancements in nanohydroxyapatite: synthesis, biomedical applications and composite developments.

Regen Biomater. 2024-11-5

[5]
Synthesis and characterization of hydroxyapatite-zinc oxide nanocomposites incorporating rosemary and thyme essential oils for enhanced bone regeneration and antimicrobial activity.

Rom J Morphol Embryol. 2024

[6]
Enhanced Release of Calcium Ions from Hydroxyapatite Nanoparticles with an Increase in Their Specific Surface Area.

Materials (Basel). 2023-9-25

本文引用的文献

[1]
A Brief Review on Cerium Oxide (CeONPs)-Based Scaffolds: Recent Advances in Wound Healing Applications.

Micromachines (Basel). 2023-4-17

[2]
Guided Bone Regeneration Using a Novel Magnesium Membrane: A Literature Review and a Report of Two Cases in Humans.

J Funct Biomater. 2023-6-1

[3]
Biomaterial-assisted tumor therapy: A brief review of hydroxyapatite nanoparticles and its composites used in bone tumors therapy.

Front Bioeng Biotechnol. 2023-4-7

[4]
Production of Nano Hydroxyapatite and Mg-Whitlockite from Biowaste-Derived products via Continuous Flow Hydrothermal Synthesis: A Step towards Circular Economy.

Materials (Basel). 2023-3-7

[5]
The Diversity of Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen.

Microorganisms. 2023-1-30

[6]
Sequential Therapy for Bone Regeneration by Cerium Oxide-Reinforced 3D-Printed Bioactive Glass Scaffolds.

ACS Nano. 2023-3-14

[7]
Bioinorganic Preparation of Hydroxyapatite and Rare Earth Substituted Hydroxyapatite for Biomaterials Applications.

Bioinorg Chem Appl. 2023-1-23

[8]
Ceria-based coatings on magnesium alloys for biomedical applications: a literature review.

RSC Adv. 2023-1-9

[9]
The Use of Cerium Compounds as Antimicrobials for Biomedical Applications.

Molecules. 2022-4-21

[10]
Use of bioactive glass doped with magnesium or strontium for bone regeneration: A rabbit critical-size calvarial defects study.

Dent Res J (Isfahan). 2022-2-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索