Suppr超能文献

细胞在拉伸下的取向:线性黏弹性模型的稳定性。

Cell orientation under stretch: Stability of a linear viscoelastic model.

机构信息

Department of Mathematical Sciences "G.L. Lagrange" Dipartimento di Eccellenza 2018-2022, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; Department of Mathematics "G. Peano", Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Turin, Italy.

Department of Mathematical Sciences "G.L. Lagrange" Dipartimento di Eccellenza 2018-2022, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.

出版信息

Math Biosci. 2021 Jul;337:108630. doi: 10.1016/j.mbs.2021.108630. Epub 2021 May 17.

Abstract

The sensitivity of cells to alterations in the microenvironment and in particular to external mechanical stimuli is significant in many biological and physiological circumstances. In this regard, experimental assays demonstrated that, when a monolayer of cells cultured on an elastic substrate is subject to an external cyclic stretch with a sufficiently high frequency, a reorganization of actin stress fibres and focal adhesions happens in order to reach a stable equilibrium orientation, characterized by a precise angle between the cell major axis and the largest strain direction. To examine the frequency effect on the orientation dynamics, we propose a linear viscoelastic model that describes the coupled evolution of the cellular stress and the orientation angle. We find that cell orientation oscillates tending to an angle that is predicted by the minimization of a very general orthotropic elastic energy, as confirmed by a bifurcation analysis. Moreover, simulations show that the speed of convergence towards the predicted equilibrium orientation presents a changeover related to the viscous-elastic transition for viscoelastic materials. In particular, when the imposed oscillation period is lower than the characteristic turnover rate of the cytoskeleton and of adhesion molecules such as integrins, reorientation is significantly faster.

摘要

细胞对外环境变化,尤其是对外界机械刺激的敏感性,在许多生物学和生理学情况下都具有重要意义。在这方面,实验表明,当在弹性基底上培养的单层细胞受到足够高频率的外部周期性拉伸时,肌动蛋白应力纤维和黏附斑会发生重排,以达到稳定的平衡取向,其特征是细胞长轴和最大应变方向之间存在精确的角度。为了研究频率对取向动力学的影响,我们提出了一个线性粘弹性模型,该模型描述了细胞应力和取向角的耦合演化。我们发现,细胞取向呈振荡趋势,趋向于由最小化非常一般的各向异性弹性能量所预测的角度,这一点通过分岔分析得到了证实。此外,模拟表明,朝向预测平衡取向的收敛速度与粘弹性材料的粘弹转变有关。具体来说,当施加的振荡周期低于细胞骨架和黏附分子(如整合素)的特征周转率时,重定向会显著加快。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验