Suppr超能文献

通过大规模 NMR 预测确定无定形药物的结构。

Structure determination of an amorphous drug through large-scale NMR predictions.

机构信息

Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

出版信息

Nat Commun. 2021 May 20;12(1):2964. doi: 10.1038/s41467-021-23208-7.

Abstract

Knowledge of the structure of amorphous solids can direct, for example, the optimization of pharmaceutical formulations, but atomic-level structure determination in amorphous molecular solids has so far not been possible. Solid-state nuclear magnetic resonance (NMR) is among the most popular methods to characterize amorphous materials, and molecular dynamics (MD) simulations can help describe the structure of disordered materials. However, directly relating MD to NMR experiments in molecular solids has been out of reach until now because of the large size of these simulations. Here, using a machine learning model of chemical shifts, we determine the atomic-level structure of the hydrated amorphous drug AZD5718 by combining dynamic nuclear polarization-enhanced solid-state NMR experiments with predicted chemical shifts for MD simulations of large systems. From these amorphous structures we then identify H-bonding motifs and relate them to local intermolecular complex formation energies.

摘要

了解无定形固体的结构可以指导药物配方的优化,但到目前为止,还不可能确定无定形分子固体的原子级结构。固态核磁共振(NMR)是最常用的分析无定形材料的方法之一,分子动力学(MD)模拟有助于描述无序材料的结构。然而,由于这些模拟的规模较大,直到现在,直接将 MD 与分子固体中的 NMR 实验联系起来一直是不可能的。在这里,我们通过结合动态核极化增强固态 NMR 实验和大系统 MD 模拟的预测化学位移,使用化学位移的机器学习模型,确定水合无定形药物 AZD5718 的原子级结构。然后,我们从这些无定形结构中识别氢键模式,并将其与局部分子间络合形成能联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7195/8137699/2856105c5511/41467_2021_23208_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验