Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Nat Commun. 2021 May 20;12(1):2964. doi: 10.1038/s41467-021-23208-7.
Knowledge of the structure of amorphous solids can direct, for example, the optimization of pharmaceutical formulations, but atomic-level structure determination in amorphous molecular solids has so far not been possible. Solid-state nuclear magnetic resonance (NMR) is among the most popular methods to characterize amorphous materials, and molecular dynamics (MD) simulations can help describe the structure of disordered materials. However, directly relating MD to NMR experiments in molecular solids has been out of reach until now because of the large size of these simulations. Here, using a machine learning model of chemical shifts, we determine the atomic-level structure of the hydrated amorphous drug AZD5718 by combining dynamic nuclear polarization-enhanced solid-state NMR experiments with predicted chemical shifts for MD simulations of large systems. From these amorphous structures we then identify H-bonding motifs and relate them to local intermolecular complex formation energies.
了解无定形固体的结构可以指导药物配方的优化,但到目前为止,还不可能确定无定形分子固体的原子级结构。固态核磁共振(NMR)是最常用的分析无定形材料的方法之一,分子动力学(MD)模拟有助于描述无序材料的结构。然而,由于这些模拟的规模较大,直到现在,直接将 MD 与分子固体中的 NMR 实验联系起来一直是不可能的。在这里,我们通过结合动态核极化增强固态 NMR 实验和大系统 MD 模拟的预测化学位移,使用化学位移的机器学习模型,确定水合无定形药物 AZD5718 的原子级结构。然后,我们从这些无定形结构中识别氢键模式,并将其与局部分子间络合形成能联系起来。