Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853-1901, USA.
RiceTec Inc, Alvin, TX, 77511, USA.
Theor Appl Genet. 2021 Aug;134(8):2613-2637. doi: 10.1007/s00122-021-03848-5. Epub 2021 May 20.
Association analysis for ionomic concentrations of 20 elements identified independent genetic factors underlying the root and shoot ionomes of rice, providing a platform for selecting and dissecting causal genetic variants. Understanding the genetic basis of mineral nutrient acquisition is key to fully describing how terrestrial organisms interact with the non-living environment. Rice (Oryza sativa L.) serves both as a model organism for genetic studies and as an important component of the global food system. Studies in rice ionomics have primarily focused on above ground tissues evaluated from field-grown plants. Here, we describe a comprehensive study of the genetic basis of the rice ionome in both roots and shoots of 6-week-old rice plants for 20 elements using a controlled hydroponics growth system. Building on the wealth of publicly available rice genomic resources, including a panel of 373 diverse rice lines, 4.8 M genome-wide single-nucleotide polymorphisms, single- and multi-marker analysis pipelines, an extensive tome of 321 candidate genes and legacy QTLs from across 15 years of rice genetics literature, we used genome-wide association analysis and biparental QTL analysis to identify 114 genomic regions associated with ionomic variation. The genetic basis for root and shoot ionomes was highly distinct; 78 loci were associated with roots and 36 loci with shoots, with no overlapping genomic regions for the same element across tissues. We further describe the distribution of phenotypic variation across haplotypes and identify candidate genes within highly significant regions associated with sulfur, manganese, cadmium, and molybdenum. Our analysis provides critical insight into the genetic basis of natural phenotypic variation for both root and shoot ionomes in rice and provides a comprehensive resource for dissecting and testing causal genetic variants.
对 20 种元素的离子组浓度进行关联分析,确定了水稻根和地上部离子组的独立遗传因素,为选择和剖析因果遗传变异提供了一个平台。了解矿物营养物质获取的遗传基础是全面描述陆地生物如何与非生命环境相互作用的关键。水稻(Oryza sativa L.)既是遗传研究的模式生物,也是全球粮食系统的重要组成部分。水稻离子组学的研究主要集中在地上组织上,这些组织是从田间生长的植物中评估的。在这里,我们使用受控水培生长系统描述了对 6 周龄水稻根和地上部 20 种元素的遗传基础的综合研究。基于丰富的公开水稻基因组资源,包括 373 个不同的水稻品系、480 万个全基因组单核苷酸多态性、单标记和多标记分析管道、321 个候选基因的广泛集合以及过去 15 年水稻遗传学文献中的 15 个遗传 QTL,我们使用全基因组关联分析和双亲 QTL 分析来鉴定与离子组变异相关的 114 个基因组区域。根和地上部离子组的遗传基础高度不同;78 个位点与根有关,36 个位点与地上部有关,同一组织中没有相同元素的重叠基因组区域。我们进一步描述了表型变异在单倍型中的分布,并在与硫、锰、镉和钼高度相关的显著区域内鉴定了候选基因。我们的分析为水稻根和地上部离子组的自然表型变异的遗传基础提供了关键的见解,并为剖析和测试因果遗传变异提供了一个全面的资源。