Suppr超能文献

基于置信引导聚合和跨模态细化的多模态磁共振图像合成。

Multi-Modality MR Image Synthesis via Confidence-Guided Aggregation and Cross-Modality Refinement.

出版信息

IEEE J Biomed Health Inform. 2022 Jan;26(1):27-35. doi: 10.1109/JBHI.2021.3082541. Epub 2022 Jan 17.

Abstract

Magnetic resonance imaging (MRI) can provide multi-modality MR images by setting task-specific scan parameters, and has been widely used in various disease diagnosis and planned treatments. However, in practical clinical applications, it is often difficult to obtain multi-modality MR images simultaneously due to patient discomfort, and scanning costs, etc. Therefore, how to effectively utilize the existing modality images to synthesize missing modality image has become a hot research topic. In this paper, we propose a novel confidence-guided aggregation and cross-modality refinement network (CACR-Net) for multi-modality MR image synthesis, which effectively utilizes complementary and correlative information of multiple modalities to synthesize high-quality target-modality images. Specifically, to effectively utilize the complementary modality-specific characteristics, a confidence-guided aggregation module is proposed to adaptively aggregate the multiple target-modality images generated from multiple source-modality images by using the corresponding confidence maps. Based on the aggregated target-modality image, a cross-modality refinement module is presented to further refine the target-modality image by mining correlative information among the multiple source-modality images and aggregated target-modality image. By training the proposed CACR-Net in an end-to-end manner, high-quality and sharp target-modality MR images are effectively synthesized. Experimental results on the widely used benchmark demonstrate that the proposed method outperforms state-of-the-art methods.

摘要

磁共振成像(MRI)可以通过设置特定任务的扫描参数提供多模态 MR 图像,已广泛应用于各种疾病的诊断和计划治疗。然而,在实际的临床应用中,由于患者不适、扫描成本等原因,往往难以同时获得多模态 MR 图像。因此,如何有效地利用现有模态图像来合成缺失模态图像已成为一个热门研究课题。在本文中,我们提出了一种新颖的基于置信引导聚合和跨模态细化网络(CACR-Net)的多模态 MR 图像合成方法,该方法有效地利用了多模态之间的互补和相关信息来合成高质量的目标模态图像。具体来说,为了有效地利用互补的模态特定特征,我们提出了一种置信引导聚合模块,通过使用相应的置信图自适应地聚合来自多个源模态图像的多个目标模态图像。基于聚合的目标模态图像,我们提出了一种跨模态细化模块,通过挖掘多个源模态图像和聚合的目标模态图像之间的相关信息,进一步细化目标模态图像。通过端到端的方式训练所提出的 CACR-Net,可以有效地合成高质量和锐利的目标模态 MR 图像。在广泛使用的基准上的实验结果表明,所提出的方法优于最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验