Suppr超能文献

基于自动编码器的药物-靶点相互作用预测:通过保持药物化学性质和功能的一致性

Autoencoder-based drug-target interaction prediction by preserving the consistency of chemical properties and functions of drugs.

作者信息

Sun Chang, Cao Yangkun, Wei Jin-Mao, Liu Jian

机构信息

College of Computer Science, Nankai University, Tianjin 300071, China.

Institute of Big Data, Nankai University, Tianjin 300071, China.

出版信息

Bioinformatics. 2021 Oct 25;37(20):3618-3625. doi: 10.1093/bioinformatics/btab384.

Abstract

MOTIVATION

Exploring the potential drug-target interactions (DTIs) is a key step in drug discovery and repurposing. In recent years, predicting the probable DTIs through computational methods has gradually become a research hot spot. However, most of the previous studies failed to judiciously take into account the consistency between the chemical properties of drug and its functions. The changes of these relationships may lead to a severely negative effect on the prediction of DTIs.

RESULTS

We propose an autoencoder-based method, AEFS, under spatial consistency constraints to predict DTIs. A heterogeneous network is established to integrate the information of drugs, proteins and diseases. The original drug features are projected to an embedding (protein) space by a multi-layer encoder, and further projected into label (disease) space by a decoder. In this process, the clinical information of drugs is introduced to assist the DTI prediction. By maintaining the distribution of drug correlation in the original feature, embedding and label space, AEFS keeps the consistency between chemical properties and functions of drugs. Experimental comparisons indicate that AEFS is more robust for imbalanced data and of significantly superior performance in DTI prediction. Case studies further confirm its ability to mine the latent DTIs.

AVAILABILITY AND IMPLEMENTATION

The code of AEFS is available at https://github.com/JackieSun818/AEFS.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

探索潜在的药物-靶点相互作用(DTIs)是药物发现和药物再利用的关键步骤。近年来,通过计算方法预测可能的DTIs逐渐成为研究热点。然而,大多数先前的研究未能审慎考虑药物化学性质与其功能之间的一致性。这些关系的变化可能会对DTIs的预测产生严重的负面影响。

结果

我们提出了一种基于自动编码器的方法AEFS,在空间一致性约束下预测DTIs。建立了一个异质网络来整合药物、蛋白质和疾病的信息。原始药物特征通过多层编码器投影到嵌入(蛋白质)空间,并通过解码器进一步投影到标签(疾病)空间。在此过程中,引入药物的临床信息以辅助DTI预测。通过保持原始特征、嵌入和标签空间中药物相关性的分布,AEFS保持了药物化学性质和功能之间的一致性。实验比较表明,AEFS对不平衡数据更具鲁棒性,在DTI预测中具有显著优越的性能。案例研究进一步证实了其挖掘潜在DTIs的能力。

可用性和实现

AEFS的代码可在https://github.com/JackieSun818/AEFS获取。

补充信息

补充数据可在《生物信息学》在线获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验