Suppr超能文献

GraphCPIs:一种用于潜在化合物 - 蛋白质相互作用的新型基于图的计算模型。

GraphCPIs: A novel graph-based computational model for potential compound-protein interactions.

作者信息

Chen Zhan-Heng, Zhao Bo-Wei, Li Jian-Qiang, Guo Zhen-Hao, You Zhu-Hong

机构信息

Department of Clinical Anesthesiology, Faculty of Anesthesiology, Naval Medical University, Shanghai 200433, China.

The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.

出版信息

Mol Ther Nucleic Acids. 2023 May 4;32:721-728. doi: 10.1016/j.omtn.2023.04.030. eCollection 2023 Jun 13.

Abstract

Identifying proteins that interact with drug compounds has been recognized as an important part in the process of drug discovery. Despite extensive efforts that have been invested in predicting compound-protein interactions (CPIs), existing traditional methods still face several challenges. The computer-aided methods can identify high-quality CPI candidates instantaneously. In this research, a novel model is named GraphCPIs, proposed to improve the CPI prediction accuracy. First, we establish the adjacent matrix of entities connected to both drugs and proteins from the collected dataset. Then, the feature representation of nodes could be obtained by using the graph convolutional network and Grarep embedding model. Finally, an extreme gradient boosting (XGBoost) classifier is exploited to identify potential CPIs based on the stacked two kinds of features. The results demonstrate that GraphCPIs achieves the best performance, whose average predictive accuracy rate reaches 90.09%, average area under the receiver operating characteristic curve is 0.9572, and the average area under the precision and recall curve is 0.9621. Moreover, comparative experiments reveal that our method surpasses the state-of-the-art approaches in the field of accuracy and other indicators with the same experimental environment. We believe that the GraphCPIs model will provide valuable insight to discover novel candidate drug-related proteins.

摘要

识别与药物化合物相互作用的蛋白质已被公认为是药物发现过程中的重要一环。尽管在预测化合物 - 蛋白质相互作用(CPI)方面已投入大量精力,但现有的传统方法仍面临若干挑战。计算机辅助方法能够瞬间识别出高质量的 CPI 候选物。在本研究中,提出了一种名为 GraphCPIs 的新型模型,以提高 CPI 预测的准确性。首先,我们从收集的数据集中建立与药物和蛋白质均相连的实体的邻接矩阵。然后,通过使用图卷积网络和 Grarep 嵌入模型获得节点的特征表示。最后,利用极端梯度提升(XGBoost)分类器基于堆叠的两种特征来识别潜在的 CPI。结果表明,GraphCPIs 取得了最佳性能,其平均预测准确率达到 90.09%,平均受试者工作特征曲线下面积为 0.9572,平均精确率和召回率曲线下面积为 0.9621。此外,对比实验表明,在相同实验环境下,我们的方法在准确性和其他指标方面超越了该领域的现有先进方法。我们相信 GraphCPIs 模型将为发现新型候选药物相关蛋白质提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6869/10209012/888010dbd30b/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验