Suppr超能文献

EVITTA:一个基于网络的转录组分析可视化和推理工具包。

eVITTA: a web-based visualization and inference toolbox for transcriptome analysis.

机构信息

Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada.

British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

Nucleic Acids Res. 2021 Jul 2;49(W1):W207-W215. doi: 10.1093/nar/gkab366.

Abstract

Transcriptome profiling is essential for gene regulation studies in development and disease. Current web-based tools enable functional characterization of transcriptome data, but most are restricted to applying gene-list-based methods to single datasets, inefficient in leveraging up-to-date and species-specific information, and limited in their visualization options. Additionally, there is no systematic way to explore data stored in the largest transcriptome repository, NCBI GEO. To fill these gaps, we have developed eVITTA (easy Visualization and Inference Toolbox for Transcriptome Analysis; https://tau.cmmt.ubc.ca/eVITTA/). eVITTA provides modules for analysis and exploration of studies published in NCBI GEO (easyGEO), detailed molecular- and systems-level functional profiling (easyGSEA), and customizable comparisons among experimental groups (easyVizR). We tested eVITTA on transcriptomes of SARS-CoV-2 infected human nasopharyngeal swab samples, and identified a downregulation of olfactory signal transducers, in line with the clinical presentation of anosmia in COVID-19 patients. We also analyzed transcriptomes of Caenorhabditis elegans worms with disrupted S-adenosylmethionine metabolism, confirming activation of innate immune responses and feedback induction of one-carbon cycle genes. Collectively, eVITTA streamlines complex computational workflows into an accessible interface, thus filling the gap of an end-to-end platform capable of capturing both broad and granular changes in human and model organism transcriptomes.

摘要

转录组谱分析对于发育和疾病中的基因调控研究至关重要。当前基于网络的工具可实现转录组数据的功能特征描述,但大多数工具仅限于将基于基因列表的方法应用于单个数据集,无法有效地利用最新的和物种特异性的信息,并且在可视化选项方面受到限制。此外,没有系统的方法可以探索存储在最大的转录组数据库 NCBI GEO 中的数据。为了弥补这些空白,我们开发了 eVITTA(易可视化和转录组分析推理工具;https://tau.cmmt.ubc.ca/eVITTA/)。eVITTA 提供了用于分析和探索在 NCBI GEO(easyGEO)中发表的研究的模块,详细的分子和系统水平功能分析(easyGSEA),以及实验分组之间的可定制比较(easyVizR)。我们在感染 SARS-CoV-2 的人鼻咽拭子样本的转录组上测试了 eVITTA,并鉴定出嗅觉信号转导物的下调,这与 COVID-19 患者的嗅觉丧失的临床表现一致。我们还分析了 S-腺苷甲硫氨酸代谢紊乱的秀丽隐杆线虫的转录组,证实了先天免疫反应的激活和一碳循环基因的反馈诱导。总的来说,eVITTA 将复杂的计算工作流程简化为一个易于访问的界面,从而填补了一个能够捕获人类和模式生物转录组中广泛和细微变化的端到端平台的空白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f290/8262691/85df600d6f54/gkab366gra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验