Wu Shengting, Qian Yuxuan, Fan Zhehao, Lin Qiushui, Zhang Qiang, Chen Zhiheng, Pu Xinkai, Chen Xiao, Guo Qingxin, Mao Ningfang, Jiang Lixian, Su Jiacan, Lian Xiaofeng
Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
Shanghai Key Laboratory of Neuro-Ultrasound for Diagnosis and Treatment, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China.
Bioact Mater. 2025 Jul 17;53:300-313. doi: 10.1016/j.bioactmat.2025.07.022. eCollection 2025 Nov.
Spinal cord injury (SCI)-induced severe neurological deficits arise from persistent ionic dysregulation and the dysfunction of inhibitory interneurons. Nitric oxide (NO) serves as a critical second messenger in ion channel modulation, yet its therapeutic potential in SCI-associated ionic dysregulation remains unexplored. In this study, an octahedral palladium nanozyme and L-Arg composite hydrogel (-Pd/Arg) that achieves spatiotemporally controlled NO release while catalytically neutralizing the hazardous by-products of NO was engineered. -Pd/Arg orchestrates dual neurovascular repair through augmenting endothelial nitric oxide synthase (eNOS) expression to enhance endothelial cell survival and stimulate brain-derived neurotrophic factor (BDNF) secretion, which further restores potassium chloride cotransporter KCC2 on the neuron cytoplasm, thereby rebalancing chloride extrusion capacity and renormalizing inhibitory interneuron excitability. The resultant ionic homeostasis recovery synergized with angiogenesis potentiation significantly improved sensorimotor function in SCI models. Our work not only deciphers the NO-KCC2-BDNF axis as a master regulator of neural inhibition circuitry but also establishes a proof-of-concept for ionic microenvironment-reprogramming therapeutics. This biomolecule-delivery paradigm advances both mechanistic understanding and translational potential in neurotrauma rehabilitation.
脊髓损伤(SCI)引起的严重神经功能缺损源于持续的离子失调和抑制性中间神经元的功能障碍。一氧化氮(NO)作为离子通道调节中的关键第二信使,但其在SCI相关离子失调中的治疗潜力仍未得到探索。在本研究中,设计了一种八面体钯纳米酶和L-精氨酸复合水凝胶(-Pd/Arg),其在催化中和NO有害副产物的同时实现了时空可控的NO释放。-Pd/Arg通过增强内皮型一氧化氮合酶(eNOS)表达来促进双重神经血管修复,以提高内皮细胞存活率并刺激脑源性神经营养因子(BDNF)分泌,进而恢复神经元细胞质上的氯化钾共转运体KCC2,从而重新平衡氯离子外排能力并使抑制性中间神经元兴奋性恢复正常。由此产生的离子稳态恢复与血管生成增强协同作用,显著改善了SCI模型中的感觉运动功能。我们的工作不仅将NO-KCC2-BDNF轴解读为神经抑制回路的主要调节因子,还为离子微环境重编程疗法建立了概念验证。这种生物分子递送模式推动了神经创伤康复领域的机制理解和转化潜力。