Suppr超能文献

AweGNN:用于分子的自动参数化加权元素特定图神经网络。

AweGNN: Auto-parametrized weighted element-specific graph neural networks for molecules.

机构信息

Department of Mathematics, Michigan State University, MI, 48824, USA.

Department of Mathematics, University of Kentucky, KY, 40506, USA.

出版信息

Comput Biol Med. 2021 Jul;134:104460. doi: 10.1016/j.compbiomed.2021.104460. Epub 2021 May 12.

Abstract

While automated feature extraction has had tremendous success in many deep learning algorithms for image analysis and natural language processing, it does not work well for data involving complex internal structures, such as molecules. Data representations via advanced mathematics, including algebraic topology, differential geometry, and graph theory, have demonstrated superiority in a variety of biomolecular applications, however, their performance is often dependent on manual parametrization. This work introduces the auto-parametrized weighted element-specific graph neural network, dubbed AweGNN, to overcome the obstacle of this tedious parametrization process while also being a suitable technique for automated feature extraction on these internally complex biomolecular data sets. The AweGNN is a neural network model based on geometric-graph features of element-pair interactions, with its graph parameters being updated throughout the training, which results in what we call a network-enabled automatic representation (NEAR). To enhance the predictions with small data sets, we construct multi-task (MT) AweGNN models in addition to single-task (ST) AweGNN models. The proposed methods are applied to various benchmark data sets, including four data sets for quantitative toxicity analysis and another data set for solvation prediction. Extensive numerical tests show that AweGNN models can achieve state-of-the-art performance in molecular property predictions.

摘要

虽然自动化特征提取在图像分析和自然语言处理的许多深度学习算法中取得了巨大成功,但它不适用于涉及复杂内部结构的数据,例如分子。通过高级数学表示的数据,包括代数拓扑、微分几何和图论,在各种生物分子应用中表现出优越性,但是,它们的性能通常取决于手动参数化。这项工作引入了自动参数化加权元素特定图神经网络(AweGNN),以克服这个繁琐的参数化过程的障碍,同时也是一种适用于这些内部复杂生物分子数据集的自动化特征提取的技术。AweGNN 是一种基于元素对相互作用的几何图特征的神经网络模型,其图参数在整个训练过程中不断更新,这导致了我们所谓的网络启用自动表示(NEAR)。为了增强小数据集的预测能力,我们构建了多任务(MT)AweGNN 模型,除了单任务(ST)AweGNN 模型。所提出的方法应用于各种基准数据集,包括四个用于定量毒性分析的数据集和另一个用于溶剂化预测的数据集。广泛的数值测试表明,AweGNN 模型可以在分子性质预测中达到最先进的性能。

相似文献

6
Graph Neural Network-Based Diagnosis Prediction.基于图神经网络的诊断预测。
Big Data. 2020 Oct;8(5):379-390. doi: 10.1089/big.2020.0070. Epub 2020 Aug 12.

引用本文的文献

1
SS-GNN: A Simple-Structured Graph Neural Network for Affinity Prediction.SS-GNN:一种用于亲和力预测的结构简单的图神经网络。
ACS Omega. 2023 Jun 15;8(25):22496-22507. doi: 10.1021/acsomega.3c00085. eCollection 2023 Jun 27.

本文引用的文献

1
Persistent spectral graph.持续谱图。
Int J Numer Method Biomed Eng. 2020 Sep;36(9):e3376. doi: 10.1002/cnm.3376. Epub 2020 Aug 17.
2
Quantitative adverse outcome pathway (qAOP) models for toxicity prediction.定量不良结局途径 (qAOP) 模型用于毒性预测。
Arch Toxicol. 2020 May;94(5):1497-1510. doi: 10.1007/s00204-020-02774-7. Epub 2020 May 18.
3
A review of mathematical representations of biomolecular data.生物分子数据的数学表示方法综述。
Phys Chem Chem Phys. 2020 Feb 26;22(8):4343-4367. doi: 10.1039/c9cp06554g.
8
DG-GL: Differential geometry-based geometric learning of molecular datasets.基于微分几何的分子数据集的几何学习。
Int J Numer Method Biomed Eng. 2019 Mar;35(3):e3179. doi: 10.1002/cnm.3179. Epub 2019 Feb 7.
10
Machine learning for molecular and materials science.机器学习在分子和材料科学中的应用。
Nature. 2018 Jul;559(7715):547-555. doi: 10.1038/s41586-018-0337-2. Epub 2018 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验