Suppr超能文献

基于多通道图神经网络的药物-靶标相互作用预测。

Drug-target interaction predication via multi-channel graph neural networks.

机构信息

College of Information and Computer Engineering, Northeast Forestry University, 150004, Harbin, China.

出版信息

Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab346.

Abstract

Drug-target interaction (DTI) is an important step in drug discovery. Although there are many methods for predicting drug targets, these methods have limitations in using discrete or manual feature representations. In recent years, deep learning methods have been used to predict DTIs to improve these defects. However, most of the existing deep learning methods lack the fusion of topological structure and semantic information in DPP representation learning process. Besides, when learning the DPP node representation in the DPP network, the different influences between neighboring nodes are ignored. In this paper, a new model DTI-MGNN based on multi-channel graph convolutional network and graph attention is proposed for DTI prediction. We use two independent graph attention networks to learn the different interactions between nodes for the topology graph and feature graph with different strengths. At the same time, we use a graph convolutional network with shared weight matrices to learn the common information of the two graphs. The DTI-MGNN model combines topological structure and semantic features to improve the representation learning ability of DPPs, and obtain the state-of-the-art results on public datasets. Specifically, DTI-MGNN has achieved a high accuracy in identifying DTIs (the area under the receiver operating characteristic curve is 0.9665).

摘要

药物-靶点相互作用(DTI)是药物发现的重要步骤。尽管有许多预测药物靶点的方法,但这些方法在使用离散或手动特征表示方面存在局限性。近年来,深度学习方法已被用于预测 DTI 以改善这些缺陷。然而,现有的大多数深度学习方法在 DPP 表示学习过程中缺乏拓扑结构和语义信息的融合。此外,在 DPP 网络中学习 DPP 节点表示时,忽略了节点之间的不同影响。本文提出了一种基于多通道图卷积网络和图注意力的新模型 DTI-MGNN,用于 DTI 预测。我们使用两个独立的图注意网络来学习拓扑图和特征图之间不同的节点交互作用,其强度不同。同时,我们使用具有共享权重矩阵的图卷积网络来学习两个图的公共信息。DTI-MGNN 模型结合拓扑结构和语义特征,提高了 DPP 的表示学习能力,并在公共数据集上取得了最先进的结果。具体来说,DTI-MGNN 在识别 DTI 方面取得了很高的准确率(接收者操作特征曲线下的面积为 0.9665)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验