Suppr超能文献

热带千足虫 Archispirostreptus gigas(倍足纲,Spirorstreptidae)和 Epibolus pulchripes(倍足纲,Pachybolidae)消化道中的产甲烷作用。

Methanogenesis in the Digestive Tracts of the Tropical Millipedes Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae).

机构信息

Institute of Soil Biology, Biology Centre CAS, České Budějovice, Czech Republic.

SoWa Research Infrastructure, Biology Centre CAS, České Budějovice, Czech Republic.

出版信息

Appl Environ Microbiol. 2021 Jul 13;87(15):e0061421. doi: 10.1128/AEM.00614-21.

Abstract

Methanogens represent the final decomposition step in anaerobic degradation of organic matter, occurring in the digestive tracts of various invertebrates. However, factors determining their community structure and activity in distinct gut sections are still debated. In this study, we focused on the tropical millipede species Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae), which release considerable amounts of methane. We aimed to characterize relationships between physicochemical parameters, methane production rates, and methanogen community structure in the two major gut sections, midgut and hindgut. Microsensor measurements revealed that both sections were strictly anoxic, with reducing conditions prevailing in both millipedes. Hydrogen concentration peaked in the anterior hindgut of . In both species, the intestinal pH was significantly higher in the hindgut than in the midgut. An accumulation of acetate and formate in the gut indicated bacterial fermentation activities in the digestive tracts of both species. Phylogenetic analysis of 16S rRNA genes showed a prevalence of spp. (), accompanied by a small fraction of so-far-unclassified "" (), in both species, which suggests that methanogenesis is mostly hydrogenotrophic. We conclude that anoxic conditions, negative redox potential, and bacterial production of hydrogen and formate promote gut colonization by methanogens. The higher activities of methanogens in the hindgut are explained by the higher pH of this compartment and their association with ciliates, which are restricted to this compartment and present an additional source of methanogenic substrates. Methane (CH) is the second most important atmospheric greenhouse gas after CO and is believed to account for 17% of global warming. Methanogens are a diverse group of archaea and can be found in various anoxic habitats, including digestive tracts of plant-feeding animals. Termites, cockroaches, the larvae of scarab beetles, and millipedes are the only arthropods known to host methanogens and emit large amounts of methane. Millipedes are ranked as the third most important detritivores after termites and earthworms, and they are considered keystone species in many terrestrial ecosystems. Both methane-producing and non-methane-emitting species of millipedes have been observed, but what limits their methanogenic potential is not known. In the present study, we show that physicochemical gut conditions and the distribution of symbiotic ciliates are important factors determining CH emission in millipedes. We also found close similarities to other methane-emitting arthropods, which might be associated with their similar plant-feeding habits.

摘要

产甲烷菌是有机物质在厌氧降解过程中的最后分解步骤,存在于各种无脊椎动物的消化道中。然而,决定它们在不同肠道部位的群落结构和活性的因素仍存在争议。在这项研究中,我们专注于热带千足虫物种 Archispirostreptus gigas(多足纲,Spirastreptidae 科)和 Epibolus pulchripes(多足纲,Pachybolidae 科),它们释放出大量的甲烷。我们的目的是描述两个主要肠道部位(中肠和后肠)中的理化参数、甲烷产生速率和产甲烷菌群落结构之间的关系。微传感器测量表明,两个部位均严格缺氧,两种千足虫的还原条件均占主导地位。氢浓度在前后肠的交汇处达到峰值。在这两种物种中,肠道 pH 值在后肠显著高于中肠。肠道中乙酸盐和甲酸盐的积累表明两种物种的消化道中都存在细菌发酵活动。16S rRNA 基因的系统发育分析表明,在这两种物种中,产甲烷菌属(Methanobrevibacter)占主导地位(),其次是一小部分迄今尚未分类的“”(),这表明产甲烷作用主要是氢营养型的。我们得出的结论是,缺氧条件、负氧化还原电位以及细菌产生的氢和甲酸盐促进了产甲烷菌在肠道中的定植。后肠中产甲烷菌的活性更高,原因是该部位的 pH 值较高,并且与纤毛虫有关联,纤毛虫仅限于该部位,是产甲烷菌的另一种底物来源。甲烷(CH)是仅次于 CO 的第二大重要大气温室气体,被认为占全球变暖的 17%。产甲烷菌是一组多样化的古菌,存在于各种缺氧环境中,包括食草动物的消化道。已知只有白蚁、蟑螂、甲虫幼虫和千足虫等节肢动物宿主产甲烷菌并大量排放甲烷。千足虫是仅次于白蚁和蚯蚓的第三大重要碎屑分解者,它们被认为是许多陆地生态系统中的关键物种。已观察到产甲烷和不排放甲烷的千足虫,但限制其产甲烷能力的因素尚不清楚。在本研究中,我们表明,肠道的理化条件和共生纤毛虫的分布是决定千足虫 CH 排放的重要因素。我们还发现与其他排放甲烷的节肢动物有密切的相似性,这可能与其相似的食草习性有关。

相似文献

2
Methane production and methanogenic Archaea in the digestive tracts of millipedes (Diplopoda).
PLoS One. 2014 Jul 16;9(7):e102659. doi: 10.1371/journal.pone.0102659. eCollection 2014.
3
Enzymatic activities in the digestive tract of spirostreptid and spirobolid millipedes (Diplopoda: Spirostreptida and Spirobolida).
Comp Biochem Physiol B Biochem Mol Biol. 2020 Mar;241:110388. doi: 10.1016/j.cbpb.2019.110388. Epub 2019 Nov 18.
4
Diversity and taxonomic revision of methanogens and other archaea in the intestinal tract of terrestrial arthropods.
Front Microbiol. 2023 Nov 15;14:1281628. doi: 10.3389/fmicb.2023.1281628. eCollection 2023.
5
Methane production in terrestrial arthropods.
Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5441-5. doi: 10.1073/pnas.91.12.5441.
7
Diversity and community of methanogens in the large intestine of finishing pigs.
BMC Microbiol. 2019 Apr 29;19(1):83. doi: 10.1186/s12866-019-1459-x.
8
Methanogenic food web in the gut contents of methane-emitting earthworm Eudrilus eugeniae from Brazil.
ISME J. 2015 Aug;9(8):1778-92. doi: 10.1038/ismej.2014.262. Epub 2015 Jan 23.
9
Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat.
Appl Environ Microbiol. 2003 Jan;69(1):74-83. doi: 10.1128/AEM.69.1.74-83.2003.

本文引用的文献

1
Diversity, ecology and evolution of Archaea.
Nat Microbiol. 2020 Jul;5(7):887-900. doi: 10.1038/s41564-020-0715-z. Epub 2020 May 4.
2
Aquatic and terrestrial cyanobacteria produce methane.
Sci Adv. 2020 Jan 15;6(3):eaax5343. doi: 10.1126/sciadv.aax5343. eCollection 2020 Jan.
3
Methylotrophic methanogens everywhere - physiology and ecology of novel players in global methane cycling.
Biochem Soc Trans. 2019 Dec 20;47(6):1895-1907. doi: 10.1042/BST20180565.
5
Termite mounds mitigate half of termite methane emissions.
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):13306-13311. doi: 10.1073/pnas.1809790115. Epub 2018 Nov 26.
7
Renewing Felsenstein's phylogenetic bootstrap in the era of big data.
Nature. 2018 Apr;556(7702):452-456. doi: 10.1038/s41586-018-0043-0. Epub 2018 Apr 18.
8
UFBoot2: Improving the Ultrafast Bootstrap Approximation.
Mol Biol Evol. 2018 Feb 1;35(2):518-522. doi: 10.1093/molbev/msx281.
10
ModelFinder: fast model selection for accurate phylogenetic estimates.
Nat Methods. 2017 Jun;14(6):587-589. doi: 10.1038/nmeth.4285. Epub 2017 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验