Suppr超能文献

使用深度学习抑制电影密度中的伪影生成回波。

Suppression of artifact-generating echoes in cine DENSE using deep learning.

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.

Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA.

出版信息

Magn Reson Med. 2021 Oct;86(4):2095-2104. doi: 10.1002/mrm.28832. Epub 2021 May 22.

Abstract

PURPOSE

To use deep learning for suppression of the artifact-generating T -relaxation echo in cine displacement encoding with stimulated echoes (DENSE) for the purpose of reducing the scan time.

METHODS

A U-Net was trained to suppress the artifact-generating T -relaxation echo using complementary phase-cycled data as the ground truth. A data-augmentation method was developed that generates synthetic DENSE images with arbitrary displacement-encoding frequencies to suppress the T -relaxation echo modulated for a range of frequencies. The resulting U-Net (DAS-Net) was compared with k-space zero-filling as an alternative method. Non-phase-cycled DENSE images acquired in shorter breath-holds were processed by DAS-Net and compared with DENSE images acquired with phase cycling for the quantification of myocardial strain.

RESULTS

The DAS-Net method effectively suppressed the T -relaxation echo and its artifacts, and achieved root Mean Square(RMS) error = 5.5 ± 0.8 and structural similarity index = 0.85 ± 0.02 for DENSE images acquired with a displacement encoding frequency of 0.10 cycles/mm. The DAS-Net method outperformed zero-filling (root Mean Square error = 5.8 ± 1.5 vs 13.5 ± 1.5, DAS-Net vs zero-filling, P < .01; and structural similarity index = 0.83 ± 0.04 vs 0.66 ± 0.03, DAS-Net vs zero-filling, P < .01). Strain data for non-phase-cycled DENSE images with DAS-Net showed close agreement with strain from phase-cycled DENSE.

CONCLUSION

The DAS-Net method provides an effective alternative approach for suppression of the artifact-generating T -relaxation echo in DENSE MRI, enabling a 42% reduction in scan time compared to DENSE with phase-cycling.

摘要

目的

利用深度学习抑制带有激发回波的电影位移编码(DENSE)中的产生伪影的 T1 弛豫回波,以减少扫描时间。

方法

使用互补相位循环数据作为真实值训练 U-Net 来抑制产生伪影的 T1 弛豫回波。开发了一种数据增强方法,该方法可生成具有任意位移编码频率的合成 DENSE 图像,以抑制调制频率范围的 T1 弛豫回波。所得到的 U-Net(DAS-Net)与作为替代方法的 k 空间零填充进行了比较。通过 DAS-Net 处理较短屏气时间获得的非相位循环 DENSE 图像,并与相位循环获得的 DENSE 图像进行比较,以量化心肌应变。

结果

DAS-Net 方法有效地抑制了 T1 弛豫回波及其伪影,在位移编码频率为 0.10 个周期/mm 时,DENSE 图像的均方根误差(RMS)为 5.5±0.8,结构相似性指数(SSIM)为 0.85±0.02。DAS-Net 方法优于零填充(RMS 误差=5.8±1.5 比 13.5±1.5,DAS-Net 比零填充,P<0.01;SSIM=0.83±0.04 比 0.66±0.03,DAS-Net 比零填充,P<0.01)。使用 DAS-Net 的非相位循环 DENSE 图像的应变数据与相位循环 DENSE 的应变数据具有很好的一致性。

结论

DAS-Net 方法为 DENSE MRI 中产生伪影的 T1 弛豫回波的抑制提供了一种有效的替代方法,与相位循环 DENSE 相比,扫描时间减少了 42%。

相似文献

引用本文的文献

本文引用的文献

2
Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network.使用循环神经网络减少心脏 MRI 运动伪影。
IEEE Trans Med Imaging. 2021 Aug;40(8):2170-2181. doi: 10.1109/TMI.2021.3073381. Epub 2021 Jul 30.
7
Supervised Speech Separation Based on Deep Learning: An Overview.基于深度学习的监督语音分离:综述
IEEE/ACM Trans Audio Speech Lang Process. 2018 Oct;26(10):1702-1726. doi: 10.1109/TASLP.2018.2842159. Epub 2018 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验