Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA.
Magn Reson Med. 2021 Oct;86(4):2095-2104. doi: 10.1002/mrm.28832. Epub 2021 May 22.
To use deep learning for suppression of the artifact-generating T -relaxation echo in cine displacement encoding with stimulated echoes (DENSE) for the purpose of reducing the scan time.
A U-Net was trained to suppress the artifact-generating T -relaxation echo using complementary phase-cycled data as the ground truth. A data-augmentation method was developed that generates synthetic DENSE images with arbitrary displacement-encoding frequencies to suppress the T -relaxation echo modulated for a range of frequencies. The resulting U-Net (DAS-Net) was compared with k-space zero-filling as an alternative method. Non-phase-cycled DENSE images acquired in shorter breath-holds were processed by DAS-Net and compared with DENSE images acquired with phase cycling for the quantification of myocardial strain.
The DAS-Net method effectively suppressed the T -relaxation echo and its artifacts, and achieved root Mean Square(RMS) error = 5.5 ± 0.8 and structural similarity index = 0.85 ± 0.02 for DENSE images acquired with a displacement encoding frequency of 0.10 cycles/mm. The DAS-Net method outperformed zero-filling (root Mean Square error = 5.8 ± 1.5 vs 13.5 ± 1.5, DAS-Net vs zero-filling, P < .01; and structural similarity index = 0.83 ± 0.04 vs 0.66 ± 0.03, DAS-Net vs zero-filling, P < .01). Strain data for non-phase-cycled DENSE images with DAS-Net showed close agreement with strain from phase-cycled DENSE.
The DAS-Net method provides an effective alternative approach for suppression of the artifact-generating T -relaxation echo in DENSE MRI, enabling a 42% reduction in scan time compared to DENSE with phase-cycling.
利用深度学习抑制带有激发回波的电影位移编码(DENSE)中的产生伪影的 T1 弛豫回波,以减少扫描时间。
使用互补相位循环数据作为真实值训练 U-Net 来抑制产生伪影的 T1 弛豫回波。开发了一种数据增强方法,该方法可生成具有任意位移编码频率的合成 DENSE 图像,以抑制调制频率范围的 T1 弛豫回波。所得到的 U-Net(DAS-Net)与作为替代方法的 k 空间零填充进行了比较。通过 DAS-Net 处理较短屏气时间获得的非相位循环 DENSE 图像,并与相位循环获得的 DENSE 图像进行比较,以量化心肌应变。
DAS-Net 方法有效地抑制了 T1 弛豫回波及其伪影,在位移编码频率为 0.10 个周期/mm 时,DENSE 图像的均方根误差(RMS)为 5.5±0.8,结构相似性指数(SSIM)为 0.85±0.02。DAS-Net 方法优于零填充(RMS 误差=5.8±1.5 比 13.5±1.5,DAS-Net 比零填充,P<0.01;SSIM=0.83±0.04 比 0.66±0.03,DAS-Net 比零填充,P<0.01)。使用 DAS-Net 的非相位循环 DENSE 图像的应变数据与相位循环 DENSE 的应变数据具有很好的一致性。
DAS-Net 方法为 DENSE MRI 中产生伪影的 T1 弛豫回波的抑制提供了一种有效的替代方法,与相位循环 DENSE 相比,扫描时间减少了 42%。