Suppr超能文献

使用数字光投影式 3D 打印机制备“鬼片”的药物释放有效且简单的预测模型。

Effective and simple prediction model of drug release from "ghost tablets" fabricated using a digital light projection-type 3D printer.

机构信息

Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.

Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.

出版信息

Int J Pharm. 2021 Jul 15;604:120721. doi: 10.1016/j.ijpharm.2021.120721. Epub 2021 May 19.

Abstract

The application of 3D printing technology to pharmaceuticals is expanding, and 3D-printed drug formulations comprising various materials and excipients have been developed using different types of 3D printers. Here, we used a digital light processing-type 3D printer to fabricate poly(ethylene glycol) diacrylate (PEGDA)-based "ghost tablets" that release entrapped drug but do not disintegrate. Three drugs with different aqueous solubilities were incorporated separately into the tablets, and the effects of printer ink composition and printing conditions on tablet formation and drug release were investigated. We also constructed a simple and effective model to predict the drug release profiles of the 3D-printed PEGDA-based tablets based on printer ink compositions and printing conditions. Drug release profiles were constructed by combining data for the amount of drug released at a specified time (15 hr) predicted by a regression algorithm generated by machine learning (multiple linear regression) and the drug release kinetics model generated by a binary classification algorithm (support vector machine). The proposed prediction model is unique and provides information useful for the development of 3D-printed PEGDA-based tablets as future tailored medicines.

摘要

3D 打印技术在制药领域的应用正在不断扩展,已经开发出了使用不同类型 3D 打印机制造的包含各种材料和赋形剂的 3D 打印药物制剂。在这里,我们使用数字光处理型 3D 打印机制造了基于聚乙二醇二丙烯酸酯 (PEGDA) 的“幽灵片”,这些片剂释放包封的药物但不会崩解。三种水溶性不同的药物分别被掺入片剂中,研究了打印机墨水组成和打印条件对片剂形成和药物释放的影响。我们还构建了一个简单有效的模型,根据打印机墨水组成和打印条件预测 3D 打印 PEGDA 基片剂的药物释放曲线。通过结合由机器学习(多元线性回归)生成的回归算法预测的在特定时间(15 小时)释放的药物量的数据和由二进制分类算法(支持向量机)生成的药物释放动力学模型,构建了药物释放曲线。所提出的预测模型是独特的,并为开发 3D 打印 PEGDA 基片剂作为未来的定制药物提供了有用的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验