Suppr超能文献

帕金森病的蛋白质-蛋白质相互作用网络分析研究进展。

Advances in protein-protein interaction network analysis for Parkinson's disease.

机构信息

School of Pharmacy, University of Reading, UK.

School of Pharmacy, University College London, UK.

出版信息

Neurobiol Dis. 2021 Jul;155:105395. doi: 10.1016/j.nbd.2021.105395. Epub 2021 May 19.

Abstract

Protein-protein interactions (PPIs) are a key component of the subcellular molecular networks which enable cells to function. Due to their importance in homeostasis, alterations to the networks can be detrimental, leading to cellular dysfunction and ultimately disease states. Parkinson's disease (PD) is a progressive neurodegenerative condition with multifactorial aetiology, spanning genetic variation and environmental modifiers. At a molecular and systems level, the characterisation of PD is the focus of extensive research, largely due to an unmet need for disease modifying therapies. PPI network analysis approaches are a valuable strategy to accelerate our understanding of the molecular crosstalk and biological processes underlying PD pathogenesis, especially due to the complex nature of this disease. In this review, we describe the utility of PPI network approaches in modelling complex systems, focusing on previous work in PD research. We discuss four principal strategies for using PPI network approaches: to infer PD related cellular functions, pathways and novel genes; to support genomics studies; to study the interactome of single PD related genes; and to compare the molecular basis of PD to other neurodegenerative disorders. This is an evolving area of research which is likely to further expand as omics data generation and availability increase. These approaches complement and bridge-the-gap between genetics and functional research to inform future investigations. In this review we outline several limitations that require consideration, acknowledging that ongoing challenges in this field continue to be addressed and the refinement of these approaches will facilitate further advances using PPI network analysis for understanding complex diseases.

摘要

蛋白质-蛋白质相互作用(PPIs)是使细胞发挥功能的亚细胞分子网络的关键组成部分。由于它们在体内平衡中的重要性,网络的改变可能是有害的,导致细胞功能障碍,最终导致疾病状态。帕金森病(PD)是一种具有多因素发病机制的进行性神经退行性疾病,包括遗传变异和环境修饰剂。在分子和系统水平上,PD 的特征是广泛研究的焦点,主要是由于对疾病修饰疗法的需求未得到满足。PPI 网络分析方法是加速我们对 PD 发病机制下分子串扰和生物学过程理解的一种有价值的策略,特别是由于这种疾病的复杂性。在这篇综述中,我们描述了 PPI 网络分析方法在模拟复杂系统中的应用,重点介绍了 PD 研究中的先前工作。我们讨论了使用 PPI 网络分析方法的四种主要策略:推断与 PD 相关的细胞功能、途径和新基因;支持基因组学研究;研究单个 PD 相关基因的互作组;以及将 PD 的分子基础与其他神经退行性疾病进行比较。这是一个不断发展的研究领域,随着组学数据的生成和可用性的增加,它可能会进一步扩展。这些方法补充和弥合了遗传学和功能研究之间的差距,为未来的研究提供信息。在这篇综述中,我们概述了几个需要考虑的局限性,承认该领域的持续挑战正在得到解决,并且这些方法的改进将有助于通过使用 PPI 网络分析来进一步理解复杂疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验