Suppr超能文献

深度学习模型在舒张功能障碍的超声心动图评估中的应用。

Deep-Learning Models for the Echocardiographic Assessment of Diastolic Dysfunction.

机构信息

Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

Center for Clinical Innovation, Division of Cardiology, West Virginia University Heart and Vascular Institute, Morgantown, West Virginia, USA; Department of Cardiovascular Biology and Medicine, Juntendo University, Tokyo, Japan; Department of Digital Health and Telemedicine R & D, Juntendo University, Tokyo, Japan.

出版信息

JACC Cardiovasc Imaging. 2021 Oct;14(10):1887-1900. doi: 10.1016/j.jcmg.2021.04.010. Epub 2021 May 19.

Abstract

OBJECTIVES

The authors explored a deep neural network (DeepNN) model that integrates multidimensional echocardiographic data to identify distinct patient subgroups with heart failure with preserved ejection fraction (HFpEF).

BACKGROUND

The clinical algorithms for phenotyping the severity of diastolic dysfunction in HFpEF remain imprecise.

METHODS

The authors developed a DeepNN model to predict high- and low-risk phenogroups in a derivation cohort (n = 1,242). Model performance was first validated in 2 external cohorts to identify elevated left ventricular filling pressure (n = 84) and assess its prognostic value (n = 219) in patients with varying degrees of systolic and diastolic dysfunction. In 3 National Heart, Lung, and Blood Institute-funded HFpEF trials, the clinical significance of the model was further validated by assessing the relationships of the phenogroups with adverse clinical outcomes (TOPCAT [Aldosterone Antagonist Therapy for Adults With Heart Failure and Preserved Systolic Function] trial, n = 518), cardiac biomarkers, and exercise parameters (NEAT-HFpEF [Nitrate's Effect on Activity Tolerance in Heart Failure With Preserved Ejection Fraction] and RELAX-HF [Evaluating the Effectiveness of Sildenafil at Improving Health Outcomes and Exercise Ability in People With Diastolic Heart Failure] pooled cohort, n = 346).

RESULTS

The DeepNN model showed higher area under the receiver-operating characteristic curve than 2016 American Society of Echocardiography guideline grades for predicting elevated left ventricular filling pressure (0.88 vs. 0.67; p = 0.01). The high-risk (vs. low-risk) phenogroup showed higher rates of heart failure hospitalization and/or death, even after adjusting for global left ventricular and atrial longitudinal strain (hazard ratio [HR]: 3.96; 95% confidence interval [CI]: 1.24 to 12.67; p = 0.021). Similarly, in the TOPCAT cohort, the high-risk (vs. low-risk) phenogroup showed higher rates of heart failure hospitalization or cardiac death (HR: 1.92; 95% CI: 1.16 to 3.22; p = 0.01) and higher event-free survival with spironolactone therapy (HR: 0.65; 95% CI: 0.46 to 0.90; p = 0.01). In the pooled RELAX-HF/NEAT-HFpEF cohort, the high-risk (vs. low-risk) phenogroup had a higher burden of chronic myocardial injury (p < 0.001), neurohormonal activation (p < 0.001), and lower exercise capacity (p = 0.001).

CONCLUSIONS

This publicly available DeepNN classifier can characterize the severity of diastolic dysfunction and identify a specific subgroup of patients with HFpEF who have elevated left ventricular filling pressures, biomarkers of myocardial injury and stress, and adverse events and those who are more likely to respond to spironolactone.

摘要

目的

作者探索了一种深度神经网络(DeepNN)模型,该模型整合多维超声心动图数据,以识别射血分数保留型心力衰竭(HFpEF)患者中具有不同特征的亚组。

背景

用于表型分析 HFpEF 患者舒张功能严重程度的临床算法仍然不够精确。

方法

作者开发了一种 DeepNN 模型,用于预测一个队列(n=1242)中的高风险和低风险表型组。首先在两个外部队列中验证模型性能,以识别出左心室充盈压升高的患者(n=84),并评估其在不同程度收缩和舒张功能障碍患者中的预后价值(n=219)。在三项由美国国立心肺血液研究所资助的 HFpEF 试验中,通过评估表型组与不良临床结局(TOPCAT [醛固酮拮抗剂治疗射血分数保留的心力衰竭] 试验,n=518)、心脏生物标志物和运动参数的关系,进一步验证了该模型的临床意义(NEAT-HFpEF [硝酸盐对射血分数保留心力衰竭患者活动耐量的影响] 和 RELAX-HF [评价西地那非对舒张性心力衰竭患者健康结局和运动能力的有效性] 合并队列,n=346)。

结果

与 2016 年美国超声心动图学会指南对左心室充盈压升高的预测分级相比,DeepNN 模型显示出更高的受试者工作特征曲线下面积(0.88 比 0.67;p=0.01)。高风险(与低风险)表型组的心力衰竭住院和/或死亡发生率更高,即使在调整了整体左心室和心房纵向应变后也是如此(风险比 [HR]:3.96;95%置信区间 [CI]:1.24 至 12.67;p=0.021)。同样,在 TOPCAT 队列中,高风险(与低风险)表型组的心力衰竭住院或心脏死亡发生率更高(HR:1.92;95%CI:1.16 至 3.22;p=0.01),且螺内酯治疗的无事件生存时间更长(HR:0.65;95%CI:0.46 至 0.90;p=0.01)。在合并的 RELAX-HF/NEAT-HFpEF 队列中,高风险(与低风险)表型组的慢性心肌损伤负担更大(p<0.001),神经激素激活程度更高(p<0.001),运动能力更低(p=0.001)。

结论

这个公开的深度神经网络分类器可以描述舒张功能障碍的严重程度,并识别出射血分数保留型心力衰竭患者中一个具有左心室充盈压升高、心肌损伤和应激生物标志物以及不良事件的特定亚组,并且这些患者更有可能对螺内酯有反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验