Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
Chemosphere. 2021 Oct;281:130901. doi: 10.1016/j.chemosphere.2021.130901. Epub 2021 May 17.
The interest for graphene-based nanomaterials (GBMs) is growing worldwide as their properties allow the development of new innovative applications. In parallel, concerns are increasing about their potential adverse effects on the environment are increasing. The available data concerning the potential risk associated to exposure of aquatic organisms to these GBMs are still limited and little is known regarding their endocrine disruption potential. In the present study, the endocrine disruption potential of graphene oxide (GO) and reduced graphene oxide (rGO) was assessed using a T3-induced amphibian metamorphosis assay. The results indicated that GBMs potentiate the effects of exogenous T3 with a more marked effect of GO compared to rGO. T3 quantifications in the exposure media indicated adsorption of the hormone on GBMs, increasing its bioavailability for organisms because GBMs are accumulated in the gut and the gills of these amphibians. This study highlights that the tested GBMs do not disrupt the thyroid pathway in amphibians but indicates that adsorption properties of these nanomaterials may increase the bioavailability and the toxicity of other pollutants.
基于石墨烯的纳米材料(GBMs)因其特性可以开发出新的创新应用,因此在全球范围内引起了人们的兴趣。与此同时,人们对它们对环境的潜在不良影响的担忧也在增加。关于这些 GBMs 暴露于水生生物的潜在风险的数据仍然有限,并且关于它们的内分泌干扰潜力知之甚少。在本研究中,使用 T3 诱导的两栖动物变态测定法评估了氧化石墨烯(GO)和还原氧化石墨烯(rGO)的内分泌干扰潜力。结果表明,GBMs 增强了外源性 T3 的作用,与 rGO 相比,GO 的作用更为明显。暴露介质中的 T3 定量分析表明,激素被吸附在 GBMs 上,增加了其对生物体的生物利用度,因为 GBMs 在这些两栖动物的肠道和鳃中积累。本研究表明,测试的 GBMs 不会破坏两栖动物的甲状腺途径,但表明这些纳米材料的吸附特性可能会增加其他污染物的生物利用度和毒性。