Wood Michael D, Simmatis Leif E R, Jacobson Jill A, Dukelow Sean P, Boyd J Gordon, Scott Stephen H
Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC, Canada.
Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.
Front Hum Neurosci. 2021 May 6;15:652201. doi: 10.3389/fnhum.2021.652201. eCollection 2021.
BACKGROUND: Kinarm Standard Tests (KSTs) is a suite of upper limb tasks to assess sensory, motor, and cognitive functions, which produces granular performance data that reflect spatial and temporal aspects of behavior (>100 variables per individual). We have previously used principal component analysis (PCA) to reduce the dimensionality of multivariate data using the Kinarm End-Point Lab (EP). Here, we performed PCA using data from the Kinarm Exoskeleton Lab (EXO), and determined agreement of PCA results across EP and EXO platforms in healthy participants. We additionally examined whether further dimensionality reduction was possible by using PCA across behavioral tasks. METHODS: Healthy participants were assessed using the Kinarm EXO ( = 469) and EP ( = 170-200). Four behavioral tasks (six assessments in total) were performed that quantified arm sensory and motor function, including position sense [Arm Position Matching (APM)] and three motor tasks [Visually Guided Reaching (VGR), Object Hit (OH), and Object Hit and Avoid (OHA)]. The number of components to include per task was determined from scree plots and parallel analysis, and rotation type (orthogonal vs. oblique) was decided on a per-task basis. To assess agreement, we compared principal components (PCs) across platforms using distance correlation. We additionally considered inter-task interactions in EXO data by performing PCA across all six behavioral assessments. RESULTS: By applying PCA on a per task basis to data collected using the EXO, the number of behavioral parameters were substantially reduced by 58-75% while accounting for 76-87% of the variance. These results compared well to the EP analysis, and we found good-to-excellent agreement values (0.75-0.99) between PCs from the EXO and those from the EP. Finally, we were able to reduce the dimensionality of the EXO data across tasks down to 16 components out of a total of 76 behavioral parameters, which represents a reduction of 79% while accounting for 73% of the total variance. CONCLUSION: PCA of Kinarm robotic assessment appears to capture similar relationships between kinematic features in healthy individuals and is agnostic to the robotic platform used for collection. Further work is needed to investigate the use of PCA-based data reduction for the characterization of neurological deficits in clinical populations.
背景:Kinarm标准测试(KSTs)是一组用于评估感觉、运动和认知功能的上肢任务,它能产生反映行为时空方面的详细性能数据(每人超过100个变量)。我们之前使用主成分分析(PCA)通过Kinarm端点实验室(EP)来降低多变量数据的维度。在此,我们使用来自Kinarm外骨骼实验室(EXO)的数据进行PCA,并确定健康参与者中EP和EXO平台上PCA结果的一致性。我们还研究了通过对行为任务进行PCA是否可以进一步降低维度。 方法:使用Kinarm EXO(n = 469)和EP(n = 170 - 200)对健康参与者进行评估。进行了四项行为任务(共六项评估),这些任务量化了手臂的感觉和运动功能,包括位置觉[手臂位置匹配(APM)]和三项运动任务[视觉引导抓握(VGR)、物体击打(OH)和物体击打与躲避(OHA)]。每个任务要纳入的成分数量根据碎石图和平行分析来确定,旋转类型(正交与斜交)则根据每个任务来决定。为了评估一致性,我们使用距离相关性比较了不同平台的主成分(PCs)。我们还通过对所有六项行为评估进行PCA来考虑EXO数据中的任务间相互作用。 结果:通过对使用EXO收集的数据按任务进行PCA,行为参数数量大幅减少了58 - 75%,同时解释了76 - 87%的方差。这些结果与EP分析的结果相当,并且我们发现EXO的PCs与EP的PCs之间的一致性值良好到优秀(0.75 - 0.99)。最后,我们能够将跨任务的EXO数据维度从总共76个行为参数减少到16个成分,这意味着减少了79%,同时解释了总方差的73%。 结论:Kinarm机器人评估的PCA似乎捕捉到了健康个体中运动学特征之间的相似关系,并且与用于数据收集的机器人平台无关。需要进一步开展工作来研究基于PCA的数据降维在临床人群神经功能缺损特征描述中的应用。
J Neuroeng Rehabil. 2015-8-12
Mult Scler J Exp Transl Clin. 2020-10-15
J Neuroeng Rehabil. 2021-5-12
J Neuroeng Rehabil. 2012-10-4
J Neuroeng Rehabil. 2019-11-21
Mult Scler J Exp Transl Clin. 2020-10-15
J Neuroeng Rehabil. 2020-7-2
IEEE Trans Neural Syst Rehabil Eng. 2020-4
J Neuroeng Rehabil. 2019-11-21
PLoS One. 2017-12-22
J Neuroeng Rehabil. 2017-11-13